Documentation

Mathlib.CategoryTheory.Abelian.InjectiveResolution

Abelian categories with enough injectives have injective resolutions #

Main results #

When the underlying category is abelian:

Auxiliary construction for desc.

Equations
Instances For
    def CategoryTheory.InjectiveResolution.descFSucc {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] {Y Z : C} (I : CategoryTheory.InjectiveResolution Y) (J : CategoryTheory.InjectiveResolution Z) (n : ) (g : J.cocomplex.X n I.cocomplex.X n) (g' : J.cocomplex.X (n + 1) I.cocomplex.X (n + 1)) (w : CategoryTheory.CategoryStruct.comp (J.cocomplex.d n (n + 1)) g' = CategoryTheory.CategoryStruct.comp g (I.cocomplex.d n (n + 1))) :
    (g'' : J.cocomplex.X (n + 2) I.cocomplex.X (n + 2)) ×' CategoryTheory.CategoryStruct.comp (J.cocomplex.d (n + 1) (n + 2)) g'' = CategoryTheory.CategoryStruct.comp g' (I.cocomplex.d (n + 1) (n + 2))

    Auxiliary construction for desc.

    Equations
    Instances For

      A morphism in C descends to a chain map between injective resolutions.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        An auxiliary definition for descHomotopyZero.

        Equations
        Instances For

          An auxiliary definition for descHomotopyZero.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def CategoryTheory.InjectiveResolution.descHomotopyZeroSucc {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] {Y Z : C} {I : CategoryTheory.InjectiveResolution Y} {J : CategoryTheory.InjectiveResolution Z} (f : I.cocomplex J.cocomplex) (n : ) (g : I.cocomplex.X (n + 1) J.cocomplex.X n) (g' : I.cocomplex.X (n + 2) J.cocomplex.X (n + 1)) (w : f.f (n + 1) = CategoryTheory.CategoryStruct.comp (I.cocomplex.d (n + 1) (n + 2)) g' + CategoryTheory.CategoryStruct.comp g (J.cocomplex.d n (n + 1))) :
            I.cocomplex.X (n + 3) J.cocomplex.X (n + 2)

            An auxiliary definition for descHomotopyZero.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.InjectiveResolution.comp_descHomotopyZeroSucc {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] {Y Z : C} {I : CategoryTheory.InjectiveResolution Y} {J : CategoryTheory.InjectiveResolution Z} (f : I.cocomplex J.cocomplex) (n : ) (g : I.cocomplex.X (n + 1) J.cocomplex.X n) (g' : I.cocomplex.X (n + 2) J.cocomplex.X (n + 1)) (w : f.f (n + 1) = CategoryTheory.CategoryStruct.comp (I.cocomplex.d (n + 1) (n + 2)) g' + CategoryTheory.CategoryStruct.comp g (J.cocomplex.d n (n + 1))) :
              CategoryTheory.CategoryStruct.comp (I.cocomplex.d (n + 2) (n + 3)) (CategoryTheory.InjectiveResolution.descHomotopyZeroSucc f n g g' w) = f.f (n + 2) - CategoryTheory.CategoryStruct.comp g' (J.cocomplex.d (n + 1) (n + 2))
              @[simp]
              theorem CategoryTheory.InjectiveResolution.comp_descHomotopyZeroSucc_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] {Y Z : C} {I : CategoryTheory.InjectiveResolution Y} {J : CategoryTheory.InjectiveResolution Z} (f : I.cocomplex J.cocomplex) (n : ) (g : I.cocomplex.X (n + 1) J.cocomplex.X n) (g' : I.cocomplex.X (n + 2) J.cocomplex.X (n + 1)) (w : f.f (n + 1) = CategoryTheory.CategoryStruct.comp (I.cocomplex.d (n + 1) (n + 2)) g' + CategoryTheory.CategoryStruct.comp g (J.cocomplex.d n (n + 1))) {Z✝ : C} (h : J.cocomplex.X (n + 2) Z✝) :

              Any descent of the zero morphism is homotopic to zero.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The descent of the identity morphism is homotopic to the identity cochain map.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The descent of a composition is homotopic to the composition of the descents.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Any two injective resolutions are homotopy equivalent.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[reducible, inline]

                      An arbitrarily chosen injective resolution of an object.

                      Equations
                      Instances For

                        Taking injective resolutions is functorial, if considered with target the homotopy category (-indexed cochain complexes and chain maps up to homotopy).

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          If I : InjectiveResolution X, then the chosen (injectiveResolutions C).obj X is isomorphic (in the homotopy category) to I.cocomplex.

                          Equations
                          Instances For

                            Our goal is to define InjectiveResolution.of Z : InjectiveResolution Z. The 0-th object in this resolution will just be Injective.under Z, i.e. an arbitrarily chosen injective object with a map from Z. After that, we build the n+1-st object as Injective.syzygies applied to the previously constructed morphism, and the map from the n-th object as Injective.d.

                            Auxiliary definition for InjectiveResolution.of.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[irreducible]

                              In any abelian category with enough injectives, InjectiveResolution.of Z constructs an injective resolution of the object Z.

                              Equations
                              Instances For