Bousfield localizations with respect to Serre classes #
If G : D ⥤ C
is an exact functor between abelian categories,
with a fully faithful right adjoint F
, then G
identifies
C
to the localization of D
with respect to the
class of morphisms G.kernel.isoModSerre
, i.e. D
is the localization of C
with respect to the Serre class
G.kernel
consisting of the objects in D
that are sent to a zero object by G
.
(We also translate this in terms of a left Bousfield localization.)
theorem
CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms
{C : Type u_1}
{D : Type u_2}
[Category.{u_4, u_1} C]
[Category.{u_3, u_2} D]
[Abelian C]
[Abelian D]
(G : Functor D C)
[Limits.PreservesFiniteLimits G]
[Limits.PreservesFiniteColimits G]
:
theorem
CategoryTheory.Abelian.isoModSerre_kernel_eq_leftBousfield_W_of_rightAdjoint
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
[Abelian C]
[Abelian D]
{G : Functor D C}
[Limits.PreservesFiniteLimits G]
[Limits.PreservesFiniteColimits G]
{F : Functor C D}
(adj : G ⊣ F)
[F.Full]
[F.Faithful]
:
theorem
CategoryTheory.Abelian.isLocalization_isoModSerre_kernel_of_leftAdjoint
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
[Abelian C]
[Abelian D]
{G : Functor D C}
[Limits.PreservesFiniteLimits G]
[Limits.PreservesFiniteColimits G]
{F : Functor C D}
(adj : G ⊣ F)
[F.Full]
[F.Faithful]
: