Bousfield localization #
Given a predicate P : ObjectProperty C on the objects of a category C,
we define W.isLocal : MorphismProperty C as the class of morphisms f : X ⟶ Y
such that for any Z : C such that P Z, the precomposition with f
induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z).
(This construction is part of the left Bousfield localization in the context of model categories.)
When G ⊣ F is an adjunction with F : C ⥤ D fully faithful, then
G : D ⥤ C is a localization functor for the class isLocal (· ∈ Set.range F.obj),
which then identifies to the inverse image by G of the class of
isomorphisms in C.
References #
- https://ncatlab.org/nlab/show/left+Bousfield+localization+of+model+categories
Left Bousfield localization #
Given P : ObjectProperty C, this is the class of morphisms f : X ⟶ Y
such that for all Z : C such that P Z, the precomposition with f induces
a bijection (Y ⟶ Z) ≃ (X ⟶ Z). (One of the applications of this notion
is the left Bousfield localization of model categories.)
Equations
- P.isLocal f = ∀ (Z : C), P Z → Function.Bijective fun (g : x✝ ⟶ Z) => CategoryTheory.CategoryStruct.comp f g
Instances For
The bijection (Y ⟶ Z) ≃ (X ⟶ Z) induced by f : X ⟶ Y when P.isLocal f
and P Z.
Equations
- hf.homEquiv Z hZ = Equiv.ofBijective (fun (g : Y ⟶ Z) => CategoryTheory.CategoryStruct.comp f g) ⋯
Instances For
Alias of CategoryTheory.MorphismProperty.le_isLocal_isLocal.
Alias of CategoryTheory.ObjectProperty.isLocal.
Given P : ObjectProperty C, this is the class of morphisms f : X ⟶ Y
such that for all Z : C such that P Z, the precomposition with f induces
a bijection (Y ⟶ Z) ≃ (X ⟶ Z). (One of the applications of this notion
is the left Bousfield localization of model categories.)
Instances For
Alias of CategoryTheory.ObjectProperty.isLocal.homEquiv.
The bijection (Y ⟶ Z) ≃ (X ⟶ Z) induced by f : X ⟶ Y when P.isLocal f
and P Z.
Equations
Instances For
Alias of CategoryTheory.ObjectProperty.galoisConnection_isLocal.
Alias of CategoryTheory.ObjectProperty.isLocal_adj_unit_app.
Alias of CategoryTheory.ObjectProperty.isLocal_iff_isIso_map.
Alias of CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms.
Alias of CategoryTheory.ObjectProperty.isLocalization_isLocal.