Documentation

Mathlib.CategoryTheory.Localization.Bousfield

Bousfield localization #

Given a predicate P : C → Prop on the objects of a category C, we define Localization.LeftBousfield.W P : MorphismProperty C as the class of morphisms f : X ⟶ Y such that for any Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z).

(This construction is part of left Bousfield localization in the context of model categories.)

When G ⊣ F is an adjunction with F : C ⥤ D fully faithful, then G : D ⥤ C is a localization functor for the class W (· ∈ Set.range F.obj), which then identifies to the inverse image by G of the class of isomorphisms in C.

References #

Given a predicate P : C → Prop, this is the class of morphisms f : X ⟶ Y such that for all Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z).

Equations
Instances For
    noncomputable def CategoryTheory.Localization.LeftBousfield.W.homEquiv {C : Type u_1} [Category.{u_3, u_1} C] {P : CProp} {X Y : C} {f : X Y} (hf : W P f) (Z : C) (hZ : P Z) :
    (Y Z) (X Z)

    The bijection (Y ⟶ Z) ≃ (X ⟶ Z) induced by f : X ⟶ Y when LeftBousfield.W P f and P Z.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Localization.LeftBousfield.W.homEquiv_apply {C : Type u_1} [Category.{u_3, u_1} C] {P : CProp} {X Y : C} {f : X Y} (hf : W P f) (Z : C) (hZ : P Z) (g : Y Z) :
      (hf.homEquiv Z hZ) g = CategoryStruct.comp f g
      theorem CategoryTheory.Localization.LeftBousfield.W_of_isIso {C : Type u_1} [Category.{u_3, u_1} C] (P : CProp) {X Y : C} (f : X Y) [IsIso f] :
      W P f
      theorem CategoryTheory.Localization.LeftBousfield.W_iff_isIso {C : Type u_1} [Category.{u_3, u_1} C] (P : CProp) {X Y : C} (f : X Y) (hX : P X) (hY : P Y) :
      W P f IsIso f
      theorem CategoryTheory.Localization.LeftBousfield.W_adj_unit_app {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] (X : D) :
      W (fun (x : D) => x Set.range F.obj) (adj.unit.app X)
      theorem CategoryTheory.Localization.LeftBousfield.W_iff_isIso_map {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] {X Y : D} (f : X Y) :
      W (fun (x : D) => x Set.range F.obj) f IsIso (G.map f)
      theorem CategoryTheory.Localization.LeftBousfield.W_eq_inverseImage_isomorphisms {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] :
      (W fun (x : D) => x Set.range F.obj) = (MorphismProperty.isomorphisms C).inverseImage G
      theorem CategoryTheory.Localization.LeftBousfield.isLocalization {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] :
      G.IsLocalization (W fun (x : D) => x Set.range F.obj)