Documentation

Mathlib.CategoryTheory.Localization.Bousfield

Bousfield localization #

Given a predicate P : ObjectProperty C on the objects of a category C, we define W.isLocal : MorphismProperty C as the class of morphisms f : X ⟶ Y such that for any Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z).

(This construction is part of the left Bousfield localization in the context of model categories.)

When G ⊣ F is an adjunction with F : C ⥤ D fully faithful, then G : D ⥤ C is a localization functor for the class isLocal (· ∈ Set.range F.obj), which then identifies to the inverse image by G of the class of isomorphisms in C.

References #

Left Bousfield localization #

Given P : ObjectProperty C, this is the class of morphisms f : X ⟶ Y such that for all Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z). (One of the applications of this notion is the left Bousfield localization of model categories.)

Equations
Instances For
    noncomputable def CategoryTheory.ObjectProperty.isLocal.homEquiv {C : Type u_1} [Category.{u_3, u_1} C] {P : ObjectProperty C} {X Y : C} {f : X Y} (hf : P.isLocal f) (Z : C) (hZ : P Z) :
    (Y Z) (X Z)

    The bijection (Y ⟶ Z) ≃ (X ⟶ Z) induced by f : X ⟶ Y when P.isLocal f and P Z.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.ObjectProperty.isLocal.homEquiv_apply {C : Type u_1} [Category.{u_3, u_1} C] {P : ObjectProperty C} {X Y : C} {f : X Y} (hf : P.isLocal f) (Z : C) (hZ : P Z) (g : Y Z) :
      theorem CategoryTheory.ObjectProperty.isLocal_iff_isIso {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {X Y : C} (f : X Y) (hX : P X) (hY : P Y) :
      theorem CategoryTheory.ObjectProperty.isLocal_adj_unit_app {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] (X : D) :
      isLocal (fun (x : D) => x Set.range F.obj) (adj.unit.app X)
      theorem CategoryTheory.ObjectProperty.isLocal_iff_isIso_map {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] {X Y : D} (f : X Y) :
      isLocal (fun (x : D) => x Set.range F.obj) f IsIso (G.map f)
      theorem CategoryTheory.ObjectProperty.isLocalization_isLocal {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] :
      G.IsLocalization (isLocal fun (x : D) => x Set.range F.obj)
      @[deprecated CategoryTheory.ObjectProperty.le_isLocal_isLocal (since := "2025-11-20")]

      Alias of CategoryTheory.ObjectProperty.le_isLocal_isLocal.

      @[deprecated CategoryTheory.MorphismProperty.le_isLocal_isLocal (since := "2025-11-20")]

      Alias of CategoryTheory.MorphismProperty.le_isLocal_isLocal.

      @[deprecated CategoryTheory.ObjectProperty.isLocal (since := "2025-11-20")]

      Alias of CategoryTheory.ObjectProperty.isLocal.


      Given P : ObjectProperty C, this is the class of morphisms f : X ⟶ Y such that for all Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z). (One of the applications of this notion is the left Bousfield localization of model categories.)

      Equations
      Instances For
        @[deprecated CategoryTheory.ObjectProperty.isLocal.homEquiv (since := "2025-11-20")]
        def CategoryTheory.Localization.LeftBousfield.W.homEquiv {C : Type u_1} [Category.{u_3, u_1} C] {P : ObjectProperty C} {X Y : C} {f : X Y} (hf : P.isLocal f) (Z : C) (hZ : P Z) :
        (Y Z) (X Z)

        Alias of CategoryTheory.ObjectProperty.isLocal.homEquiv.


        The bijection (Y ⟶ Z) ≃ (X ⟶ Z) induced by f : X ⟶ Y when P.isLocal f and P Z.

        Equations
        Instances For
          @[deprecated CategoryTheory.ObjectProperty.isoClosure_isLocal (since := "2025-11-20")]

          Alias of CategoryTheory.ObjectProperty.isoClosure_isLocal.

          @[deprecated CategoryTheory.ObjectProperty.isLocal_of_isIso (since := "2025-11-20")]

          Alias of CategoryTheory.ObjectProperty.isLocal_of_isIso.

          @[deprecated CategoryTheory.ObjectProperty.isLocal_iff_isIso (since := "2025-11-20")]
          theorem CategoryTheory.Localization.LeftBousfield.W_iff_isIso {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {X Y : C} (f : X Y) (hX : P X) (hY : P Y) :

          Alias of CategoryTheory.ObjectProperty.isLocal_iff_isIso.

          @[deprecated CategoryTheory.ObjectProperty.le_isLocal_iff (since := "2025-11-20")]

          Alias of CategoryTheory.ObjectProperty.le_isLocal_iff.

          @[deprecated CategoryTheory.ObjectProperty.isLocal_adj_unit_app (since := "2025-11-20")]
          theorem CategoryTheory.Localization.LeftBousfield.W_adj_unit_app {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] (X : D) :
          ObjectProperty.isLocal (fun (x : D) => x Set.range F.obj) (adj.unit.app X)

          Alias of CategoryTheory.ObjectProperty.isLocal_adj_unit_app.

          @[deprecated CategoryTheory.ObjectProperty.isLocal_iff_isIso_map (since := "2025-11-20")]
          theorem CategoryTheory.Localization.LeftBousfield.W_iff_isIso_map {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {F : Functor C D} {G : Functor D C} (adj : G F) [F.Full] [F.Faithful] {X Y : D} (f : X Y) :
          ObjectProperty.isLocal (fun (x : D) => x Set.range F.obj) f IsIso (G.map f)

          Alias of CategoryTheory.ObjectProperty.isLocal_iff_isIso_map.

          @[deprecated CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms (since := "2025-11-20")]

          Alias of CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms.

          @[deprecated CategoryTheory.ObjectProperty.isLocalization_isLocal (since := "2025-11-20")]

          Alias of CategoryTheory.ObjectProperty.isLocalization_isLocal.