Documentation

Mathlib.CategoryTheory.Adjunction.Quadruple

Adjoint quadruples #

This file concerns adjoint quadruples L ⊣ F ⊣ G ⊣ R of functors L G : C ⥤ D, F R : D ⥤ C. We bundle the adjunctions in a structure Quadruple L F G R and make the two triples Triple L F G and Triple F G R accessible as Quadruple.leftTriple and Quadruple.rightTriple.

Currently the only two results are the following:

Note that by Triple.fullyFaithfulEquiv, in an adjoint quadruple L ⊣ F ⊣ G ⊣ R L is fully faithful iff G is and F is fully faithful iff R is; these lemmas thus cover all cases in which some of the functors are fully faithful. We opt to include only those typeclass assumptions that are needed for the theorem statements, so some lemmas require only e.g. F to be fully faithful when really this means F and R both must be.

structure CategoryTheory.Adjunction.Quadruple {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) (F : Functor D C) (G : Functor C D) (R : Functor D C) :
Type (max (max (max u₁ u₂) v₁) v₂)

Structure containing the three adjunctions of an adjoint quadruple L ⊣ F ⊣ G ⊣ R.

  • adj₁ : L F

    Adjunction L ⊣ F of the adjoint quadruple L ⊣ F ⊣ G ⊣ R.

  • adj₂ : F G

    Adjunction F ⊣ G of the adjoint quadruple L ⊣ F ⊣ G ⊣ R.

  • adj₃ : G R

    Adjunction G ⊣ R of the adjoint quadruple L ⊣ F ⊣ G ⊣ R.

Instances For
    def CategoryTheory.Adjunction.Quadruple.leftTriple {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
    Triple L F G

    The left part of an adjoint quadruple L ⊣ F ⊣ G ⊣ R.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Adjunction.Quadruple.leftTriple_adj₁ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
      @[simp]
      theorem CategoryTheory.Adjunction.Quadruple.leftTriple_adj₂ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
      def CategoryTheory.Adjunction.Quadruple.rightTriple {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
      Triple F G R

      The right part of an adjoint quadruple L ⊣ F ⊣ G ⊣ R.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Adjunction.Quadruple.rightTriple_adj₂ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
        @[simp]
        theorem CategoryTheory.Adjunction.Quadruple.rightTriple_adj₁ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
        def CategoryTheory.Adjunction.Quadruple.op {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
        Quadruple R.op G.op F.op L.op

        The adjoint quadruple R.op ⊣ G.op ⊣ F.op ⊣ L.op dual to an adjoint quadruple L ⊣ F ⊣ G ⊣ R.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Adjunction.Quadruple.op_adj₃ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
          @[simp]
          theorem CategoryTheory.Adjunction.Quadruple.op_adj₂ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
          @[simp]
          theorem CategoryTheory.Adjunction.Quadruple.op_adj₁ {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
          @[simp]
          theorem CategoryTheory.Adjunction.Quadruple.op_leftTriple {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :
          @[simp]
          theorem CategoryTheory.Adjunction.Quadruple.op_rightTriple {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {L : Functor C D} {F : Functor D C} {G : Functor C D} {R : Functor D C} (q : Quadruple L F G R) :

          For an adjoint quadruple L ⊣ F ⊣ G ⊣ R where F (and hence also R) is fully faithful, all components of the natural transformation G ⟶ L are epimorphisms iff all components of the natural transformation F ⟶ R are monomorphisms.

          For an adjoint quadruple L ⊣ F ⊣ G ⊣ R where F (and hence also R) is fully faithful and its domain / codomain has all pushouts resp. pullbacks, the natural transformation G ⟶ L is an epimorphism iff the natural transformation F ⟶ R is a monomorphism.

          For an adjoint quadruple L ⊣ F ⊣ G ⊣ R where L and G are fully faithful, all components of the natural transformation L ⟶ G are epimorphisms iff all components of the natural transformation R ⟶ F are monomorphisms.

          For an adjoint quadruple L ⊣ F ⊣ G ⊣ R where L and G are fully faithful and their domain and codomain have all pullbacks resp. pushouts, the natural transformation L ⟶ G is an epimorphism iff the natural transformation R ⟶ F is a monomorphism.