Adjoint triples #
This file concerns adjoint triples F ⊣ G ⊣ H
of functors F H : C ⥤ D
, G : D ⥤ C
.
Currently, the only result is that F
is fully faithful if and only if H
is fully faithful.
theorem
CategoryTheory.Adjunction.isIso_unit_iff_isIso_counit
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
{F H : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor D C}
(adj₁ : F ⊣ G)
(adj₂ : G ⊣ H)
:
CategoryTheory.IsIso adj₁.unit ↔ CategoryTheory.IsIso adj₂.counit
noncomputable def
CategoryTheory.Adjunction.fullyFaithfulEquiv
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
{F H : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor D C}
(adj₁ : F ⊣ G)
(adj₂ : G ⊣ H)
:
F.FullyFaithful ≃ H.FullyFaithful
Given an adjoint triple F ⊣ G ⊣ H
, the left adjoint F
is fully faithful if and only if the
right adjoint H
is fully faithful.
Equations
- One or more equations did not get rendered due to their size.