Adjunctions in Cat #
We show that adjunctions in the bicategory Cat correspond to
adjunctions between functors in the usual categorical sense.
def
CategoryTheory.Adjunction.toCat
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
{F : Functor C D}
{G : Functor D C}
(adj : F ⊣ G)
:
The adjunction in the bicategorical sense attached to an adjunction between functors.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.toCat_unit_toNatTrans
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
{F : Functor C D}
{G : Functor D C}
(adj : F ⊣ G)
:
@[simp]
theorem
CategoryTheory.Adjunction.toCat_counit_toNatTrans
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
{F : Functor C D}
{G : Functor D C}
(adj : F ⊣ G)
:
def
CategoryTheory.Adjunction.ofCat
{C D : Cat}
{F : C ⟶ D}
{G : D ⟶ C}
(adj : Bicategory.Adjunction F G)
:
The adjunction of functors corresponding to an adjunction in the bicategory Cat.
Equations
- CategoryTheory.Adjunction.ofCat adj = { unit := adj.unit.toNatTrans, counit := adj.counit.toNatTrans, left_triangle_components := ⋯, right_triangle_components := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.ofCat_unit
{C D : Cat}
{F : C ⟶ D}
{G : D ⟶ C}
(adj : Bicategory.Adjunction F G)
:
@[simp]
theorem
CategoryTheory.Adjunction.ofCat_counit
{C D : Cat}
{F : C ⟶ D}
{G : D ⟶ C}
(adj : Bicategory.Adjunction F G)
:
@[simp]
theorem
CategoryTheory.Adjunction.toCat_ofCat
{C D : Cat}
{F : C ⟶ D}
{G : D ⟶ C}
(adj : Bicategory.Adjunction F G)
:
@[simp]
theorem
CategoryTheory.Adjunction.ofCat_toCat
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
{F : Functor C D}
{G : Functor D C}
(adj : F ⊣ G)
:
theorem
CategoryTheory.Adjunction.toCat_comp_toCat
{C D E : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
[Category.{v, u} E]
{F : Functor C D}
{G : Functor D C}
(adj : F ⊣ G)
{F' : Functor D E}
{G' : Functor E D}
(adj' : F' ⊣ G')
:
@[simp]
theorem
CategoryTheory.Bicategory.Adjunction.ofCat_comp
{C D E : Cat}
{F : C ⟶ D}
{G : D ⟶ C}
(adj : Adjunction F G)
{F' : D ⟶ E}
{G' : E ⟶ D}
(adj' : Adjunction F' G')
:
theorem
CategoryTheory.Bicategory.toNatTrans_mateEquiv
{C D E F : Cat}
{G : C ⟶ E}
{H : D ⟶ F}
{L₁ : C ⟶ D}
{R₁ : D ⟶ C}
{L₂ : E ⟶ F}
{R₂ : F ⟶ E}
(adj₁ : Adjunction L₁ R₁)
(adj₂ : Adjunction L₂ R₂)
(f : CategoryStruct.comp G L₂ ⟶ CategoryStruct.comp L₁ H)
:
((mateEquiv adj₁ adj₂) f).toNatTrans = (CategoryTheory.mateEquiv (Adjunction.ofCat adj₁) (Adjunction.ofCat adj₂)) f.toNatTrans
theorem
CategoryTheory.Bicategory.toNatTrans_conjugateEquiv
{C D : Cat}
{L₁ L₂ : C ⟶ D}
{R₁ R₂ : D ⟶ C}
(adj₁ : Adjunction L₁ R₁)
(adj₂ : Adjunction L₂ R₂)
(f : L₂ ⟶ L₁)
:
((conjugateEquiv adj₁ adj₂) f).toNatTrans = (CategoryTheory.conjugateEquiv (Adjunction.ofCat adj₁) (Adjunction.ofCat adj₂)) f.toNatTrans