Documentation

Mathlib.CategoryTheory.Category.ReflQuiv

The category of refl quivers #

The category ReflQuiv of (bundled) reflexive quivers, and the free/forgetful adjunction between Cat and ReflQuiv.

def CategoryTheory.ReflQuiv :
Type (max (u + 1) u (v + 1))

Category of refl quivers.

Equations
Instances For
    Equations
    • C.instReflQuiverα = C.str

    The underlying quiver of a reflexive quiver.

    Equations
    Instances For

      Construct a bundled ReflQuiv from the underlying type and the typeclass.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.ReflQuiv.of_val (C : Type u) [ReflQuiver C] :
        (of C) = C

        The forgetful functor from categories to quivers.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.ReflQuiv.forget_map {X✝ Y✝ : Cat} (F : X✝ Y✝) :
          @[simp]
          theorem CategoryTheory.ReflQuiv.forget_faithful {C D : Cat} (F G : Functor C D) (hyp : forget.map F = forget.map G) :
          F = G

          The forgetful functor from categories to quivers.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.ReflQuiv.forgetToQuiv_map {X✝ Y✝ : ReflQuiv} (F : X✝ Y✝) :
            forgetToQuiv.map F = F.toPrefunctor
            theorem CategoryTheory.ReflQuiv.forgetToQuiv_faithful {V W : ReflQuiv} (F G : V ⥤rq W) (hyp : forgetToQuiv.map F = forgetToQuiv.map G) :
            F = G
            def CategoryTheory.ReflQuiv.isoOfQuivIso {V W : Type u} [ReflQuiver V] [ReflQuiver W] (e : Quiv.of V Quiv.of W) (h_id : ∀ (X : V), e.hom.map (ReflQuiver.id X) = ReflQuiver.id (e.hom.obj X)) :
            of V of W

            An isomorphism of quivers lifts to an isomorphism of reflexive quivers given a suitable compatibility with the identities.

            Equations
            • CategoryTheory.ReflQuiv.isoOfQuivIso e h_id = { hom := { toPrefunctor := e.hom, map_id := h_id }, inv := { toPrefunctor := e.inv, map_id := }, hom_inv_id := , inv_hom_id := }
            Instances For
              def CategoryTheory.ReflQuiv.isoOfEquiv {V W : Type u} [ReflQuiver V] [ReflQuiver W] (e : V W) (he : (X Y : V) → (X Y) (e X e Y)) (h_id : ∀ (X : V), (he X X) (ReflQuiver.id X) = ReflQuiver.id (e X)) :
              of V of W

              Compatible equivalences of types and hom-types induce an isomorphism of reflexive quivers.

              Equations
              Instances For
                def CategoryTheory.ReflPrefunctor.toFunctor {C D : Cat} (F : ReflQuiv.of C ReflQuiv.of D) (hyp : ∀ {X Y Z : C} (f : X Y) (g : Y Z), F.map (CategoryStruct.comp f g) = CategoryStruct.comp (F.map f) (F.map g)) :
                Functor C D

                A refl prefunctor can be promoted to a functor if it respects composition.

                Equations
                Instances For
                  inductive CategoryTheory.Cat.FreeReflRel {V : Type u_1} [ReflQuiver V] (X Y : Paths V) (f g : X Y) :

                  The hom relation that identifies the specified reflexivity arrows with the nil paths.

                  Instances For

                    A reflexive quiver generates a free category, defined as as quotient of the free category on its underlying quiver (called the "path category") by the hom relation that uses the specified reflexivity arrows as the identity arrows.

                    Equations
                    Instances For

                      The quotient functor associated to a quotient category defines a natural map from the free category on the underlying quiver of a refl quiver to the free category on the reflexive quiver.

                      Equations
                      Instances For
                        theorem CategoryTheory.Cat.FreeRefl.lift_unique' {V : Type u_1} [ReflQuiver V] {D : Type u_3} [Category.{u_4, u_3} D] (F₁ F₂ : Functor (FreeRefl V) D) (h : (quotientFunctor V).comp F₁ = (quotientFunctor V).comp F₂) :
                        F₁ = F₂

                        This is a specialization of Quotient.lift_unique' rather than Quotient.lift_unique, hence the prime in the name.

                        The functor sending a reflexive quiver to the free category it generates, a quotient of its path category.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Cat.freeRefl_map_obj_as {X✝ Y✝ : ReflQuiv} (f : X✝ Y✝) (a : Quotient FreeReflRel) :
                          ((freeRefl.map f).obj a).as = f.obj a.as
                          @[simp]
                          theorem CategoryTheory.Cat.freeRefl_map_map {X✝ Y✝ : ReflQuiv} (f : X✝ Y✝) (a b : Quotient FreeReflRel) (hf : a b) :
                          (freeRefl.map f).map hf = Quot.liftOn hf (fun (f_1 : a.as b.as) => (FreeRefl.quotientFunctor Y✝).map (f.mapPath f_1))

                          We will make use of the natural quotient map from the free category on the underlying quiver of a refl quiver to the free category on the reflexive quiver.

                          Equations
                          Instances For

                            The unit components are defined as the composite of the corresponding unit component for the adjunction between categories and quivers with the map underlying the quotient functor.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.ReflQuiv.adj.unit.app_toPrefunctor (V : ReflQuiv) :
                              (app V).toPrefunctor = Quiv.adj.unit.app V.toQuiv ⋙q (Cat.FreeRefl.quotientFunctor V).toPrefunctor
                              @[simp]
                              theorem CategoryTheory.ReflQuiv.adj.unit.app_obj (V : ReflQuiv) (X : V) :
                              (app V).obj X = (Cat.FreeRefl.quotientFunctor V).obj ((Quiv.adj.unit.app V.toQuiv).obj X)
                              @[simp]
                              theorem CategoryTheory.ReflQuiv.adj.unit.app_map (V : ReflQuiv) {X✝ Y✝ : V} (f : X✝ Y✝) :
                              (app V).map f = (Cat.FreeRefl.quotientFunctor V).map ((Quiv.adj.unit.app V.toQuiv).map f)

                              This is used in the proof of both triangle equalities.

                              The counit components are defined using the universal property of the quotient from the corresponding counit component for the adjunction between categories and quivers.

                              Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.ReflQuiv.adj.counit.app_map (C : Cat) (a b : Quotient Cat.FreeReflRel) (hf : a b) :
                                (app C).map hf = Quot.liftOn hf (fun (f : a.as b.as) => (Quiv.adj.counit.app C).map f)
                                @[simp]
                                theorem CategoryTheory.ReflQuiv.adj.counit.app_obj (C : Cat) (a : Quotient Cat.FreeReflRel) :
                                (app C).obj a = (Quiv.adj.counit.app C).obj a.as
                                @[simp]

                                The counit of ReflQuiv.adj is closely related to the counit of Quiv.adj.

                                @[simp]

                                The counit of ReflQuiv.adj is closely related to the counit of Quiv.adj. For ease of use, we introduce primed version for unbundled categories.

                                The adjunction between forming the free category on a reflexive quiver, and forgetting a category to a reflexive quiver.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For