Conjugate morphisms by isomorphisms #
An isomorphism α : X ≅ Y
defines
- a monoid isomorphism
CategoryTheory.Iso.conj : End X ≃* End Y
byα.conj f = α.inv ≫ f ≫ α.hom
; - a group isomorphism
CategoryTheory.Iso.conjAut : Aut X ≃* Aut Y
byα.conjAut f = α.symm ≪≫ f ≪≫ α
usingCategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁)
andCategoryTheory.Iso.isoCongr : (f : X₁ ≅ X₂) → (g : Y₁ ≅ Y₂) → (X₁ ≅ Y₁) ≃ (X₂ ≅ Y₂)
which are defined inCategoryTheory.HomCongr
.
An isomorphism between two objects defines a monoid isomorphism between their monoid of endomorphisms.
Equations
- α.conj = { toEquiv := α.homCongr α, map_mul' := ⋯ }
Instances For
theorem
CategoryTheory.Iso.conj_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End X)
:
α.conj f = CategoryStruct.comp α.inv (CategoryStruct.comp f α.hom)
@[simp]
theorem
CategoryTheory.Iso.conj_comp
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f g : End X)
:
α.conj (CategoryStruct.comp f g) = CategoryStruct.comp (α.conj f) (α.conj g)
@[simp]
theorem
CategoryTheory.Iso.conj_id
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
:
α.conj (CategoryStruct.id X) = CategoryStruct.id Y
@[simp]
@[simp]
theorem
CategoryTheory.Iso.trans_conj
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
{Z : C}
(β : Y ≅ Z)
(f : End X)
:
@[simp]
theorem
CategoryTheory.Iso.symm_self_conj
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End X)
:
α.symm.conj (α.conj f) = f
@[simp]
theorem
CategoryTheory.Iso.self_symm_conj
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End Y)
:
α.conj (α.symm.conj f) = f
@[simp]
theorem
CategoryTheory.Iso.conj_pow
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End X)
(n : ℕ)
:
conj
defines a group isomorphisms between groups of automorphisms
Equations
- α.conjAut = (CategoryTheory.Aut.unitsEndEquivAut X).symm.trans ((Units.mapEquiv α.conj).trans (CategoryTheory.Aut.unitsEndEquivAut Y))
Instances For
theorem
CategoryTheory.Iso.conjAut_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : Aut X)
:
@[simp]
theorem
CategoryTheory.Iso.conjAut_hom
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : Aut X)
:
(α.conjAut f).hom = α.conj f.hom
@[simp]
theorem
CategoryTheory.Iso.trans_conjAut
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
{Z : C}
(β : Y ≅ Z)
(f : Aut X)
:
@[simp]
theorem
CategoryTheory.Iso.conjAut_mul
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f g : Aut X)
:
@[simp]
theorem
CategoryTheory.Iso.conjAut_trans
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f g : Aut X)
:
@[simp]
theorem
CategoryTheory.Iso.conjAut_pow
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : Aut X)
(n : ℕ)
:
@[simp]
theorem
CategoryTheory.Iso.conjAut_zpow
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : Aut X)
(n : ℤ)
:
theorem
CategoryTheory.Functor.map_conj
{C : Type u}
[Category.{v, u} C]
{D : Type u₁}
[Category.{v₁, u₁} D]
(F : Functor C D)
{X Y : C}
(α : X ≅ Y)
(f : End X)
:
F.map (α.conj f) = (F.mapIso α).conj (F.map f)
theorem
CategoryTheory.Functor.map_conjAut
{C : Type u}
[Category.{v, u} C]
{D : Type u₁}
[Category.{v₁, u₁} D]
(F : Functor C D)
{X Y : C}
(α : X ≅ Y)
(f : Aut X)
:
F.mapIso (α.conjAut f) = (F.mapIso α).conjAut (F.mapIso f)