Documentation

Mathlib.CategoryTheory.Functor.Derived.LeftDerived

Left derived functors #

In this file, given a functor F : C ⥤ H, and L : C ⥤ D that is a localization functor for W : MorphismProperty C, we define F.totalLeftDerived L W : D ⥤ H as the right Kan extension of F along L: it is defined if the type class F.HasLeftDerivedFunctor W asserting the existence of a right Kan extension is satisfied. (The name totalLeftDerived is to avoid name-collision with Functor.leftDerived which are the left derived functors in the context of abelian categories.)

Given LF : D ⥤ H and α : L ⋙ RF ⟶ F, we also introduce a type class F.IsLeftDerivedFunctor α W saying that α is a right Kan extension of F along the localization functor L.

(This file was obtained by dualizing the results in the file CategoryTheory.Functor.Derived.RightDerived.)

References #

class CategoryTheory.Functor.IsLeftDerivedFunctor {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] :

A functor LF : D ⥤ H is a left derived functor of F : C ⥤ H if it is equipped with a natural transformation α : L ⋙ LF ⟶ F which makes it a right Kan extension of F along L, where L : C ⥤ D is a localization functor for W : MorphismProperty C.

Instances
    theorem CategoryTheory.Functor.isLeftDerivedFunctor_iff_of_iso {C : Type u_1} {D : Type u_6} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_6} D] [Category.{u_2, u_3} H] (LF' LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (α' : L.comp LF' F) (W : MorphismProperty C) [L.IsLocalization W] (e : LF LF') (comm : CategoryStruct.comp (whiskerLeft L e.hom) α' = α) :
    noncomputable def CategoryTheory.Functor.leftDerivedLift {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (β : L.comp G F) :
    G LF

    Constructor for natural transformations to a left derived functor.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.leftDerived_fac {C : Type u_5} {D : Type u_3} {H : Type u_4} [Category.{u_6, u_5} C] [Category.{u_1, u_3} D] [Category.{u_2, u_4} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (β : L.comp G F) :
      @[simp]
      theorem CategoryTheory.Functor.leftDerived_fac_assoc {C : Type u_5} {D : Type u_3} {H : Type u_4} [Category.{u_6, u_5} C] [Category.{u_1, u_3} D] [Category.{u_2, u_4} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (β : L.comp G F) {Z : Functor C H} (h : F Z) :
      @[simp]
      theorem CategoryTheory.Functor.leftDerived_fac_app {C : Type u_5} {D : Type u_3} {H : Type u_4} [Category.{u_6, u_5} C] [Category.{u_1, u_3} D] [Category.{u_2, u_4} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (β : L.comp G F) (X : C) :
      CategoryStruct.comp ((LF.leftDerivedLift α W G β).app (L.obj X)) (α.app X) = β.app X
      @[simp]
      theorem CategoryTheory.Functor.leftDerived_fac_app_assoc {C : Type u_5} {D : Type u_3} {H : Type u_4} [Category.{u_6, u_5} C] [Category.{u_1, u_3} D] [Category.{u_2, u_4} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (β : L.comp G F) (X : C) {Z : H} (h : F.obj X Z) :
      theorem CategoryTheory.Functor.leftDerived_ext {C : Type u_5} {D : Type u_3} {H : Type u_4} [Category.{u_6, u_5} C] [Category.{u_1, u_3} D] [Category.{u_2, u_4} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (γ₁ γ₂ : G LF) ( : CategoryStruct.comp (whiskerLeft L γ₁) α = CategoryStruct.comp (whiskerLeft L γ₂) α) :
      γ₁ = γ₂
      noncomputable def CategoryTheory.Functor.leftDerivedNatTrans {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (τ : F' F) :
      LF' LF

      The natural transformation LF' ⟶ LF on left derived functors that is induced by a natural transformation F' ⟶ F.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Functor.leftDerivedNatTrans_fac {C : Type u_1} {D : Type u_6} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_6} D] [Category.{u_2, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (τ : F' F) :
        @[simp]
        theorem CategoryTheory.Functor.leftDerivedNatTrans_fac_assoc {C : Type u_1} {D : Type u_6} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_6} D] [Category.{u_2, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (τ : F' F) {Z : Functor C H} (h : F Z) :
        @[simp]
        theorem CategoryTheory.Functor.leftDerivedNatTrans_app {C : Type u_1} {D : Type u_6} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_6} D] [Category.{u_2, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (τ : F' F) (X : C) :
        CategoryStruct.comp ((LF'.leftDerivedNatTrans LF α' α W τ).app (L.obj X)) (α.app X) = CategoryStruct.comp (α'.app X) (τ.app X)
        @[simp]
        theorem CategoryTheory.Functor.leftDerivedNatTrans_app_assoc {C : Type u_1} {D : Type u_6} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_6} D] [Category.{u_2, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (τ : F' F) (X : C) {Z : H} (h : F.obj X Z) :
        @[simp]
        theorem CategoryTheory.Functor.leftDerivedNatTrans_comp {C : Type u_1} {D : Type u_5} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_5} D] [Category.{u_2, u_3} H] (LF'' LF' LF : Functor D H) {F F' F'' : Functor C H} {L : Functor C D} (α'' : L.comp LF'' F'') (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] [LF'.IsLeftDerivedFunctor α' W] (τ' : F'' F') (τ : F' F) :
        CategoryStruct.comp (LF''.leftDerivedNatTrans LF' α'' α' W τ') (LF'.leftDerivedNatTrans LF α' α W τ) = LF''.leftDerivedNatTrans LF α'' α W (CategoryStruct.comp τ' τ)
        @[simp]
        theorem CategoryTheory.Functor.leftDerivedNatTrans_comp_assoc {C : Type u_1} {D : Type u_5} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_5} D] [Category.{u_2, u_3} H] (LF'' LF' LF : Functor D H) {F F' F'' : Functor C H} {L : Functor C D} (α'' : L.comp LF'' F'') (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] [LF'.IsLeftDerivedFunctor α' W] (τ' : F'' F') (τ : F' F) {Z : Functor D H} (h : LF Z) :
        noncomputable def CategoryTheory.Functor.leftDerivedNatIso {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] [LF'.IsLeftDerivedFunctor α' W] (τ : F' F) :
        LF' LF

        The natural isomorphism LF' ≅ LF on left derived functors that is induced by a natural isomorphism F' ≅ F.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.leftDerivedNatIso_inv {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] [LF'.IsLeftDerivedFunctor α' W] (τ : F' F) :
          (LF'.leftDerivedNatIso LF α' α W τ).inv = LF.leftDerivedNatTrans LF' α α' W τ.inv
          @[simp]
          theorem CategoryTheory.Functor.leftDerivedNatIso_hom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF' LF : Functor D H) {F F' : Functor C H} {L : Functor C D} (α' : L.comp LF' F') (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] [LF'.IsLeftDerivedFunctor α' W] (τ : F' F) :
          (LF'.leftDerivedNatIso LF α' α W τ).hom = LF'.leftDerivedNatTrans LF α' α W τ.hom
          @[reducible, inline]
          noncomputable abbrev CategoryTheory.Functor.leftDerivedUnique {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (LF' LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (α'₂ : L.comp LF' F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] [LF'.IsLeftDerivedFunctor α'₂ W] :
          LF LF'

          Uniqueness (up to a natural isomorphism) of the left derived functor.

          Equations
          Instances For
            theorem CategoryTheory.Functor.isLeftDerivedFunctor_iff_isIso_leftDerivedLift {C : Type u_5} {D : Type u_3} {H : Type u_4} [Category.{u_6, u_5} C] [Category.{u_1, u_3} D] [Category.{u_2, u_4} H] (LF : Functor D H) {F : Functor C H} {L : Functor C D} (α : L.comp LF F) (W : MorphismProperty C) [L.IsLocalization W] [LF.IsLeftDerivedFunctor α W] (G : Functor D H) (β : L.comp G F) :

            A functor F : C ⥤ H has a left derived functor with respect to W : MorphismProperty C if it has a right Kan extension along W.Q : C ⥤ W.Localization (or any localization functor L : C ⥤ D for W, see hasLeftDerivedFunctor_iff).

            Instances

              Given a functor F : C ⥤ H, and a localization functor L : D ⥤ H for W, this is the left derived functor D ⥤ H of F, i.e. the right Kan extension of F along L.

              Equations
              Instances For

                The canonical natural transformation L ⋙ F.totalLeftDerived L W ⟶ F.

                Equations
                Instances For