Documentation

Mathlib.CategoryTheory.Groupoid.Subgroupoid

Subgroupoid #

This file defines subgroupoids as structures containing the subsets of arrows and their stability under composition and inversion. Also defined are:

Main definitions #

Given a type C with associated groupoid C instance.

Implementation details #

The structure of this file is copied from/inspired by Mathlib/GroupTheory/Subgroup/Basic.lean and Mathlib/Combinatorics/SimpleGraph/Subgraph.lean.

TODO #

Tags #

category theory, groupoid, subgroupoid

structure CategoryTheory.Subgroupoid (C : Type u) [Groupoid C] :
Type (max u u_1)

A sugroupoid of C consists of a choice of arrows for each pair of vertices, closed under composition and inverses.

Instances For
    theorem CategoryTheory.Subgroupoid.ext {C : Type u} {inst✝ : Groupoid C} {x y : Subgroupoid C} (arrows : x.arrows = y.arrows) :
    x = y
    theorem CategoryTheory.Subgroupoid.inv_mem_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} (f : c ⟢ d) :
    Groupoid.inv f ∈ S.arrows d c ↔ f ∈ S.arrows c d
    theorem CategoryTheory.Subgroupoid.mul_mem_cancel_left {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d e : C} {f : c ⟢ d} {g : d ⟢ e} (hf : f ∈ S.arrows c d) :
    CategoryStruct.comp f g ∈ S.arrows c e ↔ g ∈ S.arrows d e
    theorem CategoryTheory.Subgroupoid.mul_mem_cancel_right {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d e : C} {f : c ⟢ d} {g : d ⟢ e} (hg : g ∈ S.arrows d e) :
    CategoryStruct.comp f g ∈ S.arrows c e ↔ f ∈ S.arrows c d

    The vertices of C on which S has non-trivial isotropy

    Equations
    • S.objs = {c : C | (S.arrows c c).Nonempty}
    Instances For
      theorem CategoryTheory.Subgroupoid.mem_objs_of_src {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
      c ∈ S.objs
      theorem CategoryTheory.Subgroupoid.mem_objs_of_tgt {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
      d ∈ S.objs
      theorem CategoryTheory.Subgroupoid.id_mem_of_src {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
      CategoryStruct.id c ∈ S.arrows c c
      theorem CategoryTheory.Subgroupoid.id_mem_of_tgt {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
      CategoryStruct.id d ∈ S.arrows d d

      A subgroupoid seen as a quiver on vertex set C

      Equations
      • S.asWideQuiver = { Hom := fun (c d : C) => Subtype (S.arrows c d) }
      Instances For
        instance CategoryTheory.Subgroupoid.coe {C : Type u} [Groupoid C] (S : Subgroupoid C) :
        Groupoid ↑S.objs

        The coercion of a subgroupoid as a groupoid

        Equations
        @[simp]
        theorem CategoryTheory.Subgroupoid.coe_comp_coe {C : Type u} [Groupoid C] (S : Subgroupoid C) {X✝ Y✝ Z✝ : ↑S.objs} (p : X✝ ⟢ Y✝) (q : Y✝ ⟢ Z✝) :
        ↑(CategoryStruct.comp p q) = CategoryStruct.comp ↑p ↑q
        theorem CategoryTheory.Subgroupoid.coe_inv_coe {C : Type u} [Groupoid C] (S : Subgroupoid C) {X✝ Y✝ : ↑S.objs} (p : X✝ ⟢ Y✝) :
        ↑(Groupoid.inv p) = Groupoid.inv ↑p
        @[simp]
        theorem CategoryTheory.Subgroupoid.coe_inv_coe' {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : ↑S.objs} (p : c ⟢ d) :
        ↑(inv p) = inv ↑p
        def CategoryTheory.Subgroupoid.hom {C : Type u} [Groupoid C] (S : Subgroupoid C) :
        Functor (↑S.objs) C

        The embedding of the coerced subgroupoid to its parent

        Equations
        • S.hom = { obj := fun (c : ↑S.objs) => ↑c, map := fun {X Y : ↑S.objs} (f : X ⟢ Y) => ↑f, map_id := β‹―, map_comp := β‹― }
        Instances For
          theorem CategoryTheory.Subgroupoid.hom.faithful {C : Type u} [Groupoid C] (S : Subgroupoid C) (c d : ↑S.objs) :
          Function.Injective fun (f : c ⟢ d) => S.hom.map f
          def CategoryTheory.Subgroupoid.vertexSubgroup {C : Type u} [Groupoid C] (S : Subgroupoid C) {c : C} (hc : c ∈ S.objs) :

          The subgroup of the vertex group at c given by the subgroupoid

          Equations
          • S.vertexSubgroup hc = { carrier := S.arrows c c, mul_mem' := β‹―, one_mem' := β‹―, inv_mem' := β‹― }
          Instances For
            def CategoryTheory.Subgroupoid.toSet {C : Type u} [Groupoid C] (S : Subgroupoid C) :
            Set ((c : C) Γ— (d : C) Γ— (c ⟢ d))

            The set of all arrows of a subgroupoid, as a set in Σ c d : C, c ⟢ d.

            Equations
            • ↑S = {F : (c : C) Γ— (d : C) Γ— (c ⟢ d) | F.snd.snd ∈ S.arrows F.fst F.snd.fst}
            Instances For
              instance CategoryTheory.Subgroupoid.instSetLikeSigmaHom {C : Type u} [Groupoid C] :
              SetLike (Subgroupoid C) ((c : C) Γ— (d : C) Γ— (c ⟢ d))
              Equations
              theorem CategoryTheory.Subgroupoid.mem_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) (F : (c : C) Γ— (d : C) Γ— (c ⟢ d)) :
              F ∈ S ↔ F.snd.snd ∈ S.arrows F.fst F.snd.fst
              theorem CategoryTheory.Subgroupoid.le_iff {C : Type u} [Groupoid C] (S T : Subgroupoid C) :
              S ≀ T ↔ βˆ€ {c d : C}, S.arrows c d βŠ† T.arrows c d
              Equations
              theorem CategoryTheory.Subgroupoid.mem_top {C : Type u} [Groupoid C] {c d : C} (f : c ⟢ d) :
              f ∈ ⊀.arrows c d
              Equations
              Equations
              Equations
              theorem CategoryTheory.Subgroupoid.mem_sInf_arrows {C : Type u} [Groupoid C] {s : Set (Subgroupoid C)} {c d : C} {p : c ⟢ d} :
              p ∈ (sInf s).arrows c d ↔ βˆ€ S ∈ s, p ∈ S.arrows c d
              theorem CategoryTheory.Subgroupoid.mem_sInf {C : Type u} [Groupoid C] {s : Set (Subgroupoid C)} {p : (c : C) Γ— (d : C) Γ— (c ⟢ d)} :
              p ∈ sInf s ↔ βˆ€ S ∈ s, p ∈ S
              theorem CategoryTheory.Subgroupoid.le_objs {C : Type u} [Groupoid C] {S T : Subgroupoid C} (h : S ≀ T) :
              S.objs βŠ† T.objs
              def CategoryTheory.Subgroupoid.inclusion {C : Type u} [Groupoid C] {S T : Subgroupoid C} (h : S ≀ T) :
              Functor ↑S.objs ↑T.objs

              The functor associated to the embedding of subgroupoids

              Equations
              • CategoryTheory.Subgroupoid.inclusion h = { obj := fun (s : ↑S.objs) => βŸ¨β†‘s, β‹―βŸ©, map := fun {X Y : ↑S.objs} (f : X ⟢ Y) => βŸ¨β†‘f, β‹―βŸ©, map_id := β‹―, map_comp := β‹― }
              Instances For
                theorem CategoryTheory.Subgroupoid.inclusion_faithful {C : Type u} [Groupoid C] {S T : Subgroupoid C} (h : S ≀ T) (s t : ↑S.objs) :
                Function.Injective fun (f : s ⟢ t) => (inclusion h).map f
                theorem CategoryTheory.Subgroupoid.inclusion_trans {C : Type u} [Groupoid C] {R S T : Subgroupoid C} (k : R ≀ S) (h : S ≀ T) :
                inclusion β‹― = (inclusion k).comp (inclusion h)
                theorem CategoryTheory.Subgroupoid.inclusion_comp_embedding {C : Type u} [Groupoid C] {S T : Subgroupoid C} (h : S ≀ T) :
                (inclusion h).comp T.hom = S.hom
                inductive CategoryTheory.Subgroupoid.Discrete.Arrows {C : Type u} [Groupoid C] (c d : C) :
                (c ⟢ d) β†’ Prop

                The family of arrows of the discrete groupoid

                Instances For

                  The only arrows of the discrete groupoid are the identity arrows.

                  Equations
                  Instances For
                    theorem CategoryTheory.Subgroupoid.mem_discrete_iff {C : Type u} [Groupoid C] {c d : C} (f : c ⟢ d) :
                    f ∈ discrete.arrows c d ↔ βˆƒ (h : c = d), f = eqToHom h

                    A subgroupoid is wide if its carrier set is all of C

                    Instances For
                      theorem CategoryTheory.Subgroupoid.IsWide.id_mem {C : Type u} [Groupoid C] {S : Subgroupoid C} (Sw : S.IsWide) (c : C) :
                      CategoryStruct.id c ∈ S.arrows c c
                      theorem CategoryTheory.Subgroupoid.IsWide.eqToHom_mem {C : Type u} [Groupoid C] {S : Subgroupoid C} (Sw : S.IsWide) {c d : C} (h : c = d) :
                      eqToHom h ∈ S.arrows c d
                      structure CategoryTheory.Subgroupoid.IsNormal {C : Type u} [Groupoid C] (S : Subgroupoid C) extends S.IsWide :

                      A subgroupoid is normal if it is wide and satisfies the expected stability under conjugacy.

                      Instances For
                        theorem CategoryTheory.Subgroupoid.IsNormal.conj' {C : Type u} [Groupoid C] {S : Subgroupoid C} (Sn : S.IsNormal) {c d : C} (p : d ⟢ c) {γ : c ⟢ c} :
                        Ξ³ ∈ S.arrows c c β†’ CategoryStruct.comp p (CategoryStruct.comp Ξ³ (Groupoid.inv p)) ∈ S.arrows d d
                        theorem CategoryTheory.Subgroupoid.IsNormal.conjugation_bij {C : Type u} [Groupoid C] (S : Subgroupoid C) (Sn : S.IsNormal) {c d : C} (p : c ⟢ d) :
                        Set.BijOn (fun (γ : c ⟢ c) => CategoryStruct.comp (Groupoid.inv p) (CategoryStruct.comp γ p)) (S.arrows c c) (S.arrows d d)
                        theorem CategoryTheory.Subgroupoid.sInf_isNormal {C : Type u} [Groupoid C] (s : Set (Subgroupoid C)) (sn : βˆ€ S ∈ s, S.IsNormal) :
                        (sInf s).IsNormal
                        theorem CategoryTheory.Subgroupoid.IsNormal.vertexSubgroup {C : Type u} [Groupoid C] (S : Subgroupoid C) (Sn : S.IsNormal) (c : C) (cS : c ∈ S.objs) :
                        (S.vertexSubgroup cS).Normal
                        def CategoryTheory.Subgroupoid.generated {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) :

                        The subgropoid generated by the set of arrows X

                        Equations
                        Instances For
                          theorem CategoryTheory.Subgroupoid.subset_generated {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) (c d : C) :
                          X c d βŠ† (generated X).arrows c d
                          def CategoryTheory.Subgroupoid.generatedNormal {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) :

                          The normal sugroupoid generated by the set of arrows X

                          Equations
                          Instances For
                            theorem CategoryTheory.Subgroupoid.generatedNormal_isNormal {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) :
                            (generatedNormal X).IsNormal
                            theorem CategoryTheory.Subgroupoid.IsNormal.generatedNormal_le {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) {S : Subgroupoid C} (Sn : S.IsNormal) :
                            generatedNormal X ≀ S ↔ βˆ€ (c d : C), X c d βŠ† S.arrows c d
                            def CategoryTheory.Subgroupoid.comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (S : Subgroupoid D) :

                            A functor between groupoid defines a map of subgroupoids in the reverse direction by taking preimages.

                            Equations
                            Instances For
                              theorem CategoryTheory.Subgroupoid.comap_mono {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (S T : Subgroupoid D) :
                              S ≀ T β†’ comap Ο† S ≀ comap Ο† T
                              theorem CategoryTheory.Subgroupoid.isNormal_comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {S : Subgroupoid D} (Sn : S.IsNormal) :
                              (comap Ο† S).IsNormal
                              @[simp]
                              theorem CategoryTheory.Subgroupoid.comap_comp {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {E : Type u_2} [Groupoid E] (ψ : Functor D E) :
                              comap (Ο†.comp ψ) = comap Ο† ∘ comap ψ
                              def CategoryTheory.Subgroupoid.ker {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) :

                              The kernel of a functor between subgroupoid is the preimage.

                              Equations
                              Instances For
                                theorem CategoryTheory.Subgroupoid.mem_ker_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {c d : C} (f : c ⟢ d) :
                                f ∈ (ker Ο†).arrows c d ↔ βˆƒ (h : Ο†.obj c = Ο†.obj d), Ο†.map f = eqToHom h
                                theorem CategoryTheory.Subgroupoid.ker_isNormal {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) :
                                (ker Ο†).IsNormal
                                @[simp]
                                theorem CategoryTheory.Subgroupoid.ker_comp {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {E : Type u_2} [Groupoid E] (ψ : Functor D E) :
                                ker (Ο†.comp ψ) = comap Ο† (ker ψ)
                                inductive CategoryTheory.Subgroupoid.Map.Arrows {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) (c d : D) :
                                (c ⟢ d) β†’ Prop

                                The family of arrows of the image of a subgroupoid under a functor injective on objects

                                Instances For
                                  theorem CategoryTheory.Subgroupoid.Map.arrows_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (S : Subgroupoid C) {c d : D} (f : c ⟢ d) :
                                  Arrows Ο† hΟ† S c d f ↔ βˆƒ (a : C) (b : C) (g : a ⟢ b) (ha : Ο†.obj a = c) (hb : Ο†.obj b = d) (_ : g ∈ S.arrows a b), f = CategoryStruct.comp (eqToHom β‹―) (CategoryStruct.comp (Ο†.map g) (eqToHom hb))
                                  def CategoryTheory.Subgroupoid.map {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) :

                                  The "forward" image of a subgroupoid under a functor injective on objects

                                  Equations
                                  Instances For
                                    theorem CategoryTheory.Subgroupoid.mem_map_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (S : Subgroupoid C) {c d : D} (f : c ⟢ d) :
                                    f ∈ (map Ο† hΟ† S).arrows c d ↔ βˆƒ (a : C) (b : C) (g : a ⟢ b) (ha : Ο†.obj a = c) (hb : Ο†.obj b = d) (_ : g ∈ S.arrows a b), f = CategoryStruct.comp (eqToHom β‹―) (CategoryStruct.comp (Ο†.map g) (eqToHom hb))
                                    theorem CategoryTheory.Subgroupoid.galoisConnection_map_comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) :
                                    GaloisConnection (map φ hφ) (comap φ)
                                    theorem CategoryTheory.Subgroupoid.map_mono {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S T : Subgroupoid C) :
                                    S ≀ T β†’ map Ο† hΟ† S ≀ map Ο† hΟ† T
                                    theorem CategoryTheory.Subgroupoid.le_comap_map {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) :
                                    S ≀ comap Ο† (map Ο† hΟ† S)
                                    theorem CategoryTheory.Subgroupoid.map_comap_le {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (T : Subgroupoid D) :
                                    map Ο† hΟ† (comap Ο† T) ≀ T
                                    theorem CategoryTheory.Subgroupoid.map_le_iff_le_comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) (T : Subgroupoid D) :
                                    map Ο† hΟ† S ≀ T ↔ S ≀ comap Ο† T
                                    theorem CategoryTheory.Subgroupoid.mem_map_objs_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (d : D) :
                                    d ∈ (map Ο† hΟ† S).objs ↔ βˆƒ c ∈ S.objs, Ο†.obj c = d
                                    @[simp]
                                    theorem CategoryTheory.Subgroupoid.map_objs_eq {C : Type u} [Groupoid C] (S : Subgroupoid C) {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) :
                                    (map φ hφ S).objs = φ.obj '' S.objs
                                    def CategoryTheory.Subgroupoid.im {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) :

                                    The image of a functor injective on objects

                                    Equations
                                    Instances For
                                      theorem CategoryTheory.Subgroupoid.mem_im_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) {c d : D} (f : c ⟢ d) :
                                      f ∈ (im Ο† hΟ†).arrows c d ↔ βˆƒ (a : C) (b : C) (g : a ⟢ b) (ha : Ο†.obj a = c) (hb : Ο†.obj b = d), f = CategoryStruct.comp (eqToHom β‹―) (CategoryStruct.comp (Ο†.map g) (eqToHom hb))
                                      theorem CategoryTheory.Subgroupoid.mem_im_objs_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (d : D) :
                                      d ∈ (im Ο† hΟ†).objs ↔ βˆƒ (c : C), Ο†.obj c = d
                                      theorem CategoryTheory.Subgroupoid.obj_surjective_of_im_eq_top {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (hΟ†' : im Ο† hΟ† = ⊀) :
                                      theorem CategoryTheory.Subgroupoid.isNormal_map {C : Type u} [Groupoid C] (S : Subgroupoid C) {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (hΟ†' : im Ο† hΟ† = ⊀) (Sn : S.IsNormal) :
                                      (map φ hφ S).IsNormal
                                      @[reducible, inline]

                                      A subgroupoid is thin (CategoryTheory.Subgroupoid.IsThin) if it has at most one arrow between any two vertices.

                                      Equations
                                      Instances For
                                        theorem CategoryTheory.Subgroupoid.isThin_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) :
                                        S.IsThin ↔ βˆ€ (c : ↑S.objs), Subsingleton ↑(S.arrows ↑c ↑c)
                                        @[reducible, inline]

                                        A subgroupoid IsTotallyDisconnected if it has only isotropy arrows.

                                        Equations
                                        Instances For
                                          theorem CategoryTheory.Subgroupoid.isTotallyDisconnected_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) :
                                          S.IsTotallyDisconnected ↔ βˆ€ (c d : C), (S.arrows c d).Nonempty β†’ c = d

                                          The isotropy subgroupoid of S

                                          Equations
                                          • S.disconnect = { arrows := fun (c d : C) => {f : c ⟢ d | c = d ∧ f ∈ S.arrows c d}, inv := β‹―, mul := β‹― }
                                          Instances For
                                            theorem CategoryTheory.Subgroupoid.disconnect_normal {C : Type u} [Groupoid C] (S : Subgroupoid C) (Sn : S.IsNormal) :
                                            S.disconnect.IsNormal
                                            @[simp]
                                            theorem CategoryTheory.Subgroupoid.mem_disconnect_objs_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) {c : C} :
                                            c ∈ S.disconnect.objs ↔ c ∈ S.objs
                                            theorem CategoryTheory.Subgroupoid.disconnect_objs {C : Type u} [Groupoid C] (S : Subgroupoid C) :
                                            S.disconnect.objs = S.objs
                                            theorem CategoryTheory.Subgroupoid.disconnect_isTotallyDisconnected {C : Type u} [Groupoid C] (S : Subgroupoid C) :
                                            S.disconnect.IsTotallyDisconnected

                                            The full subgroupoid on a set D : Set C

                                            Equations
                                            Instances For
                                              theorem CategoryTheory.Subgroupoid.full_objs {C : Type u} [Groupoid C] (D : Set C) :
                                              (full D).objs = D
                                              @[simp]
                                              theorem CategoryTheory.Subgroupoid.mem_full_iff {C : Type u} [Groupoid C] (D : Set C) {c d : C} {f : c ⟢ d} :
                                              f ∈ (full D).arrows c d ↔ c ∈ D ∧ d ∈ D
                                              @[simp]
                                              theorem CategoryTheory.Subgroupoid.mem_full_objs_iff {C : Type u} [Groupoid C] (D : Set C) {c : C} :
                                              c ∈ (full D).objs ↔ c ∈ D
                                              theorem CategoryTheory.Subgroupoid.full_arrow_eq_iff {C : Type u} [Groupoid C] (D : Set C) {c d : ↑(full D).objs} {f g : c ⟢ d} :
                                              f = g ↔ ↑f = ↑g