Documentation

Mathlib.CategoryTheory.Idempotents.FunctorCategories

Idempotent completeness and functor categories #

In this file we define an instance functor_category_isIdempotentComplete expressing that a functor category J ⥤ C is idempotent complete when the target category C is.

We also provide a fully faithful functor karoubiFunctorCategoryEmbedding : Karoubi (J ⥤ C)) : J ⥤ Karoubi C for all categories J and C.

@[simp]
theorem CategoryTheory.Idempotents.app_idem {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] (P : Karoubi (Functor J C)) (X : J) :
CategoryStruct.comp (P.p.app X) (P.p.app X) = P.p.app X
@[simp]
theorem CategoryTheory.Idempotents.app_idem_assoc {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] (P : Karoubi (Functor J C)) (X : J) {Z : C} (h : P.X.obj X Z) :
CategoryStruct.comp (P.p.app X) (CategoryStruct.comp (P.p.app X) h) = CategoryStruct.comp (P.p.app X) h
@[simp]
theorem CategoryTheory.Idempotents.app_p_comp {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (X : J) :
CategoryStruct.comp (P.p.app X) (f.f.app X) = f.f.app X
@[simp]
theorem CategoryTheory.Idempotents.app_p_comp_assoc {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (X : J) {Z : C} (h : Q.X.obj X Z) :
CategoryStruct.comp (P.p.app X) (CategoryStruct.comp (f.f.app X) h) = CategoryStruct.comp (f.f.app X) h
@[simp]
theorem CategoryTheory.Idempotents.app_comp_p {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (X : J) :
CategoryStruct.comp (f.f.app X) (Q.p.app X) = f.f.app X
@[simp]
theorem CategoryTheory.Idempotents.app_comp_p_assoc {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (X : J) {Z : C} (h : Q.X.obj X Z) :
CategoryStruct.comp (f.f.app X) (CategoryStruct.comp (Q.p.app X) h) = CategoryStruct.comp (f.f.app X) h
theorem CategoryTheory.Idempotents.app_p_comm {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (X : J) :
CategoryStruct.comp (P.p.app X) (f.f.app X) = CategoryStruct.comp (f.f.app X) (Q.p.app X)
theorem CategoryTheory.Idempotents.app_p_comm_assoc {J : Type u_1} {C : Type u_2} [Category.{u_4, u_1} J] [Category.{u_3, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (X : J) {Z : C} (h : Q.X.obj X Z) :
CategoryStruct.comp (P.p.app X) (CategoryStruct.comp (f.f.app X) h) = CategoryStruct.comp (f.f.app X) (CategoryStruct.comp (Q.p.app X) h)

On objects, the functor which sends a formal direct factor P of a functor F : J ⥤ C to the functor J ⥤ Karoubi C which sends (j : J) to the corresponding direct factor of F.obj j.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_p {J : Type u_1} {C : Type u_2} [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] (P : Karoubi (Functor J C)) (j : J) :
    ((obj P).obj j).p = P.p.app j
    @[simp]
    theorem CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_obj_X {J : Type u_1} {C : Type u_2} [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] (P : Karoubi (Functor J C)) (j : J) :
    ((obj P).obj j).X = P.X.obj j
    @[simp]
    theorem CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj_map_f {J : Type u_1} {C : Type u_2} [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] (P : Karoubi (Functor J C)) {j j' : J} (φ : j j') :
    ((obj P).map φ).f = CategoryStruct.comp (P.p.app j) (P.X.map φ)

    Tautological action on maps of the functor Karoubi (J ⥤ C) ⥤ (J ⥤ Karoubi C).

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.map_app_f {J : Type u_1} {C : Type u_2} [Category.{u_3, u_1} J] [Category.{u_4, u_2} C] {P Q : Karoubi (Functor J C)} (f : P Q) (j : J) :
      ((map f).app j).f = f.f.app j

      The tautological fully faithful functor Karoubi (J ⥤ C) ⥤ (J ⥤ Karoubi C).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The composition of (J ⥤ C) ⥤ Karoubi (J ⥤ C) and Karoubi (J ⥤ C) ⥤ (J ⥤ Karoubi C) equals the functor (J ⥤ C) ⥤ (J ⥤ Karoubi C) given by the composition with toKaroubi C : C ⥤ Karoubi C.