Limits in the category of elements #
We show that if C
has limits of shape I
and A : C ⥤ Type w
preserves limits of shape I
, then
the category of elements of A
has limits of shape I
and the forgetful functor
π : A.Elements ⥤ C
creates them.
noncomputable def
CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedConeElement'
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
:
Limits.limit ((F.comp (π A)).comp A)
(implementation) A system (Fi, fi)_i
of elements induces an element in lim_i A(Fi)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.CategoryOfElements.CreatesLimitsAux.π_liftedConeElement'
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
(i : I)
:
noncomputable def
CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedConeElement
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
A.obj (Limits.limit (F.comp (π A)))
(implementation) A system (Fi, fi)_i
of elements induces an element in A(lim_i Fi)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
(c : Limits.Cone F)
:
@[simp]
theorem
CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_π_liftedConeElement
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
(i : I)
:
noncomputable def
CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
(implementation) The constructured limit cone.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
(i : I)
:
@[simp]
theorem
CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_fst
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
@[simp]
theorem
CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_pt_snd
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
noncomputable def
CategoryTheory.CategoryOfElements.CreatesLimitsAux.isValidLift
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
(implementation) The constructed limit cone is a lift of the limit cone in C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.CategoryOfElements.CreatesLimitsAux.isLimit
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
(F : Functor I A.Elements)
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
(implementation) The constuctured limit cone is a limit cone.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable instance
CategoryTheory.CategoryOfElements.instCreatesLimitElementsπ
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
(F : Functor I A.Elements)
:
CreatesLimit F (π A)
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
CategoryTheory.CategoryOfElements.instCreatesLimitsOfShapeElementsπ
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
:
CreatesLimitsOfShape I (π A)
Equations
- CategoryTheory.CategoryOfElements.instCreatesLimitsOfShapeElementsπ = { CreatesLimit := fun {K : CategoryTheory.Functor I A.Elements} => inferInstance }
instance
CategoryTheory.CategoryOfElements.instHasLimitsOfShapeElements
{C : Type u}
[Category.{v, u} C]
{A : Functor C (Type w)}
{I : Type u₁}
[Category.{v₁, u₁} I]
[Small.{w, u₁} I]
[Limits.HasLimitsOfShape I C]
[Limits.PreservesLimitsOfShape I A]
: