The category of type-valued functors has images #
def
CategoryTheory.FunctorToTypes.monoFactorisation
{C : Type u_1}
[Category.{v_1, u_1} C]
{F G : Functor C (Type u)}
(f : F ⟶ G)
:
The image of a natural transformation between type-valued functors is a MonoFactorisation
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.FunctorToTypes.monoFactorisation_m
{C : Type u_1}
[Category.{v_1, u_1} C]
{F G : Functor C (Type u)}
(f : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.FunctorToTypes.monoFactorisation_I
{C : Type u_1}
[Category.{v_1, u_1} C]
{F G : Functor C (Type u)}
(f : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.FunctorToTypes.monoFactorisation_e
{C : Type u_1}
[Category.{v_1, u_1} C]
{F G : Functor C (Type u)}
(f : F ⟶ G)
:
noncomputable def
CategoryTheory.FunctorToTypes.monoFactorisationIsImage
{C : Type u_1}
[Category.{v_1, u_1} C]
{F G : Functor C (Type u)}
(f : F ⟶ G)
:
The image of a natural transformation between type-valued functors satisfies the universal property of images
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.FunctorToTypes.instHasImagesFunctorType
{C : Type u_1}
[Category.{v_1, u_1} C]
:
Limits.HasImages (Functor C (Type u_2))