Documentation

Mathlib.CategoryTheory.Subfunctor.Image

The image of a subfunctor #

Given a morphism of type-valued functors p : F' ⟶ F, we define its range Subfunctor.range p. More generally, if G' : Subfunctor F', we define G'.image p : Subfunctor F as the image of G' by f, and if G : Subfunctor F, we define its preimage G.preimage f : Subfunctor F'.

def CategoryTheory.Subfunctor.range {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) :

The range of a morphism of type-valued functors, as a subfunctor of the target.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Subfunctor.range_obj {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) (U : C) :
    (range p).obj U = Set.range (p.app U)
    @[simp]
    def CategoryTheory.Subfunctor.lift {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) :

    If the image of a morphism falls in a subfunctor, then the morphism factors through it.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Subfunctor.lift_app_coe {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) (U : C) (x : F'.obj U) :
      ((lift f hf).app U x) = f.app U x
      @[simp]
      theorem CategoryTheory.Subfunctor.lift_ι {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) :
      @[simp]
      theorem CategoryTheory.Subfunctor.lift_ι_assoc {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (f : F' F) {G : Subfunctor F} (hf : range f G) {Z : Functor C (Type w)} (h : F Z) :
      def CategoryTheory.Subfunctor.toRange {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) :

      Given a morphism p : F' ⟶ F of type-valued functors, this is the morphism from F' to its range.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Subfunctor.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) {i : C} (x : F'.obj i) :
        ((toRange p).app i x) = p.app i x
        @[simp]
        theorem CategoryTheory.Subfunctor.range_eq_top {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) [Epi p] :
        theorem CategoryTheory.Subfunctor.range_comp_le {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (f : F F') (g : F' F'') :
        def CategoryTheory.Subfunctor.image {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') :

        The image of a subfunctor by a morphism of type-valued functors.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Subfunctor.image_obj {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (i : C) :
          (G.image f).obj i = f.app i '' G.obj i
          @[simp]
          theorem CategoryTheory.Subfunctor.image_iSup {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} {ι : Type u_1} (G : ιSubfunctor F) (f : F F') :
          (⨆ (i : ι), G i).image f = ⨆ (i : ι), (G i).image f
          theorem CategoryTheory.Subfunctor.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (g : F' F'') :
          theorem CategoryTheory.Subfunctor.range_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (f : F F') (g : F' F'') :
          def CategoryTheory.Subfunctor.preimage {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) :

          The preimage of a subfunctor by a morphism of type-valued functors.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Subfunctor.preimage_obj {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) (n : C) :
            (G.preimage p).obj n = p.app n ⁻¹' G.obj n
            theorem CategoryTheory.Subfunctor.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F'' F') (g : F' F) :
            theorem CategoryTheory.Subfunctor.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (G' : Subfunctor F') :
            G.image f G' G G'.preimage f

            Given a morphism p : F' ⟶ F of type-valued functors and G : Subfunctor F, this is the morphism from the preimage of G by p to G.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Subfunctor.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) [hp : Epi p] :
              (G.preimage p).image p = G
              @[deprecated CategoryTheory.Subfunctor.range (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.range.


              The range of a morphism of type-valued functors, as a subfunctor of the target.

              Equations
              Instances For
                @[deprecated CategoryTheory.Subfunctor.range_id (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.range_id.

                @[deprecated CategoryTheory.Subfunctor.range_ι (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.range_ι.

                @[deprecated CategoryTheory.Subfunctor.lift (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.lift.


                If the image of a morphism falls in a subfunctor, then the morphism factors through it.

                Equations
                Instances For
                  @[deprecated CategoryTheory.Subfunctor.lift_ι (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.lift_ι.

                  @[deprecated CategoryTheory.Subfunctor.toRange (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.toRange.


                  Given a morphism p : F' ⟶ F of type-valued functors, this is the morphism from F' to its range.

                  Equations
                  Instances For
                    @[deprecated CategoryTheory.Subfunctor.toRange_ι (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.toRange_ι.

                    @[deprecated CategoryTheory.Subfunctor.toRange_app_val (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (p : F' F) {i : C} (x : F'.obj i) :
                    ((Subfunctor.toRange p).app i x) = p.app i x

                    Alias of CategoryTheory.Subfunctor.toRange_app_val.

                    @[deprecated CategoryTheory.Subfunctor.range_toRange (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.range_toRange.

                    @[deprecated CategoryTheory.Subfunctor.epi_iff_range_eq_top (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.epi_iff_range_eq_top.

                    @[deprecated CategoryTheory.Subfunctor.range_eq_top (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.range_eq_top.

                    @[deprecated CategoryTheory.Subfunctor.range_comp_le (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.range_comp_le.

                    @[deprecated CategoryTheory.Subfunctor.image (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.image.


                    The image of a subfunctor by a morphism of type-valued functors.

                    Equations
                    Instances For
                      @[deprecated CategoryTheory.Subfunctor.image_top (since := "2025-12-11")]

                      Alias of CategoryTheory.Subfunctor.image_top.

                      @[deprecated CategoryTheory.Subfunctor.image_iSup (since := "2025-12-11")]
                      theorem CategoryTheory.Subfunctor.Subpresheaf.image_iSup {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} {ι : Type u_1} (G : ιSubfunctor F) (f : F F') :
                      (⨆ (i : ι), G i).image f = ⨆ (i : ι), (G i).image f

                      Alias of CategoryTheory.Subfunctor.image_iSup.

                      @[deprecated CategoryTheory.Subfunctor.image_comp (since := "2025-12-11")]
                      theorem CategoryTheory.Subfunctor.Subpresheaf.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (g : F' F'') :

                      Alias of CategoryTheory.Subfunctor.image_comp.

                      @[deprecated CategoryTheory.Subfunctor.range_comp (since := "2025-12-11")]

                      Alias of CategoryTheory.Subfunctor.range_comp.

                      @[deprecated CategoryTheory.Subfunctor.preimage (since := "2025-12-11")]

                      Alias of CategoryTheory.Subfunctor.preimage.


                      The preimage of a subfunctor by a morphism of type-valued functors.

                      Equations
                      Instances For
                        @[deprecated CategoryTheory.Subfunctor.preimage_id (since := "2025-12-11")]

                        Alias of CategoryTheory.Subfunctor.preimage_id.

                        @[deprecated CategoryTheory.Subfunctor.preimage_comp (since := "2025-12-11")]
                        theorem CategoryTheory.Subfunctor.Subpresheaf.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor C (Type w)} (G : Subfunctor F) (f : F'' F') (g : F' F) :

                        Alias of CategoryTheory.Subfunctor.preimage_comp.

                        @[deprecated CategoryTheory.Subfunctor.image_le_iff (since := "2025-12-11")]
                        theorem CategoryTheory.Subfunctor.Subpresheaf.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F F') (G' : Subfunctor F') :
                        G.image f G' G G'.preimage f

                        Alias of CategoryTheory.Subfunctor.image_le_iff.

                        @[deprecated CategoryTheory.Subfunctor.fromPreimage (since := "2025-12-11")]

                        Alias of CategoryTheory.Subfunctor.fromPreimage.


                        Given a morphism p : F' ⟶ F of type-valued functors and G : Subfunctor F, this is the morphism from the preimage of G by p to G.

                        Equations
                        Instances For
                          @[deprecated CategoryTheory.Subfunctor.fromPreimage_ι (since := "2025-12-11")]

                          Alias of CategoryTheory.Subfunctor.fromPreimage_ι.

                          @[deprecated CategoryTheory.Subfunctor.preimage_eq_top_iff (since := "2025-12-11")]

                          Alias of CategoryTheory.Subfunctor.preimage_eq_top_iff.

                          @[deprecated CategoryTheory.Subfunctor.preimage_image_of_epi (since := "2025-12-11")]
                          theorem CategoryTheory.Subfunctor.Subpresheaf.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (p : F' F) [hp : Epi p] :
                          (G.preimage p).image p = G

                          Alias of CategoryTheory.Subfunctor.preimage_image_of_epi.