There are only v
-many natural transformations between Ind-objects #
We provide the instance LocallySmall.{v} (FullSubcategory (IsIndObject (C := C)))
, which will
serve as the basis for our definition of the category of Ind-objects.
Future work #
The equivalence established here serves as the basis for a well-known calculation of hom-sets of ind-objects as a limit of a colimit.
noncomputable def
CategoryTheory.colimitYonedaHomEquiv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{I : Type u₁}
[CategoryTheory.Category.{v₁, u₁} I]
[CategoryTheory.Limits.HasColimitsOfShape I (Type v)]
[CategoryTheory.Limits.HasLimitsOfShape Iᵒᵖ (Type v)]
[CategoryTheory.Limits.HasLimitsOfShape Iᵒᵖ (Type (max u v))]
(F : CategoryTheory.Functor I C)
(G : CategoryTheory.Functor Cᵒᵖ (Type v))
:
(CategoryTheory.Limits.colimit (F.comp CategoryTheory.yoneda) ⟶ G) ≃ CategoryTheory.Limits.limit (F.op.comp G)
Variant of colimitYonedaHomIsoLimitOp
: natural transformations with domain
colimit (F ⋙ yoneda)
are equivalent to a limit in a lower universe.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.colimitYonedaHomEquiv_π_apply
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{I : Type u₁}
[CategoryTheory.Category.{v₁, u₁} I]
[CategoryTheory.Limits.HasColimitsOfShape I (Type v)]
[CategoryTheory.Limits.HasLimitsOfShape Iᵒᵖ (Type v)]
[CategoryTheory.Limits.HasLimitsOfShape Iᵒᵖ (Type (max u v))]
(F : CategoryTheory.Functor I C)
(G : CategoryTheory.Functor Cᵒᵖ (Type v))
(η : CategoryTheory.Limits.colimit (F.comp CategoryTheory.yoneda) ⟶ G)
(i : Iᵒᵖ)
:
CategoryTheory.Limits.limit.π (F.op.comp G) i ((CategoryTheory.colimitYonedaHomEquiv F G) η) = η.app (Opposite.op (F.obj (Opposite.unop i)))
((CategoryTheory.Limits.colimit.ι (F.comp CategoryTheory.yoneda) (Opposite.unop i)).app
(Opposite.op (F.obj (Opposite.unop i)))
(CategoryTheory.CategoryStruct.id (Opposite.unop (Opposite.op (F.obj (Opposite.unop i))))))
instance
CategoryTheory.instSmallHomFunctorOppositeTypeColimitCompYoneda
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{I : Type u₁}
[CategoryTheory.Category.{v₁, u₁} I]
[CategoryTheory.Limits.HasColimitsOfShape I (Type v)]
[CategoryTheory.Limits.HasLimitsOfShape Iᵒᵖ (Type v)]
[CategoryTheory.Limits.HasLimitsOfShape Iᵒᵖ (Type (max u v))]
(F : CategoryTheory.Functor I C)
(G : CategoryTheory.Functor Cᵒᵖ (Type v))
:
Small.{v, max u v} (CategoryTheory.Limits.colimit (F.comp CategoryTheory.yoneda) ⟶ G)
Equations
- ⋯ = ⋯
instance
CategoryTheory.instLocallySmallFullSubcategoryFunctorOppositeTypeIsIndObject
{C : Type u}
[CategoryTheory.Category.{v, u} C]
:
CategoryTheory.LocallySmall.{v, max u v, max u (v + 1)}
(CategoryTheory.FullSubcategory CategoryTheory.Limits.IsIndObject)
Equations
- ⋯ = ⋯