Equifibered natural transformation #
Main definition #
CategoryTheory.NatTrans.Equifibered: A natural transformationα : F ⟶ Gis equifibered if every commutative square of the following form is a pullback.
F(X) → F(Y)
↓ ↓
G(X) → G(Y)
CategoryTheory.NatTrans.Coequifibered: The dual notion.
def
CategoryTheory.NatTrans.Equifibered
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor J C}
(α : F ⟶ G)
:
A natural transformation is equifibered if every commutative square of the following form is a pullback.
F(X) → F(Y)
↓ ↓
G(X) → G(Y)
Equations
- CategoryTheory.NatTrans.Equifibered α = ∀ ⦃i j : J⦄ (f : i ⟶ j), CategoryTheory.IsPullback (F.map f) (α.app i) (α.app j) (G.map f)
Instances For
theorem
CategoryTheory.NatTrans.equifibered_of_isIso
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor J C}
(α : F ⟶ G)
[IsIso α]
:
theorem
CategoryTheory.NatTrans.Equifibered.comp
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G H : Functor J C}
{α : F ⟶ G}
{β : G ⟶ H}
(hα : Equifibered α)
(hβ : Equifibered β)
:
theorem
CategoryTheory.NatTrans.Equifibered.whiskerRight
{J : Type u_1}
{C : Type u_3}
{D : Type u_4}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
[Category.{v_4, u_4} D]
{F G : Functor J C}
{α : F ⟶ G}
(hα : Equifibered α)
(H : Functor C D)
[∀ (i j : J) (f : j ⟶ i), Limits.PreservesLimit (Limits.cospan (α.app i) (G.map f)) H]
:
theorem
CategoryTheory.NatTrans.Equifibered.whiskerLeft
{J : Type u_1}
{K : Type u_2}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
[Category.{v_3, u_2} K]
{F G : Functor J C}
{α : F ⟶ G}
(hα : Equifibered α)
(H : Functor K J)
:
Equifibered (H.whiskerLeft α)
theorem
CategoryTheory.NatTrans.Equifibered.of_discrete
{C : Type u_3}
{ι : Type u_5}
[Category.{v_2, u_3} C]
{F G : Functor (Discrete ι) C}
(α : F ⟶ G)
:
@[deprecated CategoryTheory.NatTrans.Equifibered.of_discrete (since := "2026-01-23")]
theorem
CategoryTheory.mapPair_equifibered
{C : Type u_3}
{ι : Type u_5}
[Category.{v_2, u_3} C]
{F G : Functor (Discrete ι) C}
(α : F ⟶ G)
:
@[deprecated CategoryTheory.NatTrans.Equifibered.of_discrete (since := "2026-01-23")]
theorem
CategoryTheory.NatTrans.equifibered_of_discrete
{C : Type u_3}
{ι : Type u_5}
[Category.{v_2, u_3} C]
{F G : Functor (Discrete ι) C}
(α : F ⟶ G)
:
def
CategoryTheory.NatTrans.Coequifibered
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor J C}
(α : F ⟶ G)
:
A natural transformation is co-equifibered if every commutative square of the following form is a pushout.
F(X) → F(Y)
↓ ↓
G(X) → G(Y)
Equations
- CategoryTheory.NatTrans.Coequifibered α = ∀ ⦃i j : J⦄ (f : i ⟶ j), CategoryTheory.IsPushout (F.map f) (α.app i) (α.app j) (G.map f)
Instances For
theorem
CategoryTheory.NatTrans.Coequifibered_of_isIso
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor J C}
(α : F ⟶ G)
[IsIso α]
:
theorem
CategoryTheory.NatTrans.Coequifibered.comp
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G H : Functor J C}
{α : F ⟶ G}
{β : G ⟶ H}
(hα : Coequifibered α)
(hβ : Coequifibered β)
:
theorem
CategoryTheory.NatTrans.Coequifibered.whiskerRight
{J : Type u_1}
{C : Type u_3}
{D : Type u_4}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
[Category.{v_4, u_4} D]
{F G : Functor J C}
{α : F ⟶ G}
(hα : Coequifibered α)
(H : Functor C D)
[∀ (i j : J) (f : j ⟶ i), Limits.PreservesColimit (Limits.span (F.map f) (α.app j)) H]
:
theorem
CategoryTheory.NatTrans.Coequifibered.whiskerLeft
{J : Type u_1}
{K : Type u_2}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
[Category.{v_3, u_2} K]
{F G : Functor J C}
{α : F ⟶ G}
(hα : Coequifibered α)
(H : Functor K J)
:
Coequifibered (H.whiskerLeft α)
theorem
CategoryTheory.NatTrans.Coequifibered.of_discrete
{C : Type u_3}
[Category.{v_2, u_3} C]
{ι : Type u_6}
{F G : Functor (Discrete ι) C}
(α : F ⟶ G)
:
theorem
CategoryTheory.NatTrans.Coequifibered.op
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor J C}
{α : F ⟶ G}
(hα : Coequifibered α)
:
theorem
CategoryTheory.NatTrans.Equifibered.op
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor J C}
{α : F ⟶ G}
(hα : Equifibered α)
:
theorem
CategoryTheory.NatTrans.Coequifibered.unop
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor Jᵒᵖ Cᵒᵖ}
{α : F ⟶ G}
(hα : Coequifibered α)
:
theorem
CategoryTheory.NatTrans.Equifibered.unop
{J : Type u_1}
{C : Type u_3}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
{F G : Functor Jᵒᵖ Cᵒᵖ}
{α : F ⟶ G}
(hα : Equifibered α)
: