Functors equifibered over a fixed functor is closed under limits #
instance
CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom
{J : Type u_1}
{C : Type u_3}
{D : Type u_4}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
[Category.{v_4, u_4} D]
(F : Functor C D)
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
:
ObjectProperty.IsClosedUnderLimitsOfShape (fun (f : Over F) => Equifibered f.hom) J
instance
CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom
{J : Type u_1}
{C : Type u_3}
{D : Type u_4}
[Category.{v_1, u_1} J]
[Category.{v_2, u_3} C]
[Category.{v_4, u_4} D]
(F : Functor C D)
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
:
ObjectProperty.IsClosedUnderColimitsOfShape (fun (f : Under F) => Coequifibered f.hom) J