Documentation

Mathlib.CategoryTheory.Limits.Types.Multicoequalizer

Multicoequalizers in the category of types #

Given J : MultispanShape, d : MultispanIndex J (Type u) and c : d.multispan.CoconeTypes, we obtain a lemma isMulticoequalizer_iff which gives a criteria for c to be a colimit (i.e. a multicoequalizer): it restates in a more explicit manner the injectivity and surjectivity conditions for the map d.multispan.descColimitType c : d.multispan.ColimitType → c.pt.

We deduce a definition Set.isColimitOfMulticoequalizerDiagram which shows that given X : Type u, a MulticoequalizerDiagram in Set X gives a multicoequalizer in the category of types.

noncomputable def CategoryTheory.Limits.Types.isColimitOfMulticoequalizerDiagram {X : Type u} {ι : Type w} {A : Set X} {U : ιSet X} {V : ιιSet X} (c : CompleteLattice.MulticoequalizerDiagram A U V) :

Given X : Type u, A : Set X, U : ι → Set X and V : ι → ι → Set X such that MulticoequalizerDiagram A U V holds, then in the category of types, A is the multicoequalizer of the U is along the V i js.

Equations
Instances For