Documentation

Mathlib.CategoryTheory.Localization.DerivabilityStructure.Derives

Deriving functors using a derivability structure #

Let Φ : LocalizerMorphism W₁ W₂ be a localizer morphism between classes of morphisms on categories C₁ and C₂. Let F : C₂ ⥤ H. When Φ is a left or right derivability structure, it allows to derive the functor F (with respect to W₂) when Φ.functor ⋙ F : C₁ ⥤ H inverts W₁ (this is the most favorable case when we can apply the lemma hasPointwiseRightDerivedFunctor_iff_of_isRightDerivabilityStructure). We define Φ.Derives F as an abbreviation for W₁.IsInvertedBy (Φ.functor ⋙ F).

When h : Φ.Derives F holds and Φ is a right derivability structure, we show that F has a right derived functor with respect to W₂. Under this assumption, if L₂ : C₂ ⥤ D₂ is a localization functor for W₂, then a functor RF : D₂ ⥤ H equipped with a natural transformation α : F ⟶ L₂ ⋙ RF is the right derived functor of F iff for any X₁ : C₁, the map α.app (Φ.functor.obj X₁) is an isomorphism.

@[reducible, inline]
abbrev CategoryTheory.LocalizerMorphism.Derives {C₁ : Type u₁} {C₂ : Type u₂} {H : Type u₃} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} H] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) (F : Functor C₂ H) :

Given a localizer morphism Φ : LocalizerMorphism W₁ W₂ between morphism properties on C₁ and C₂, and a functor C₂ ⥤ H, this is the property that W₁ is inverted by Φ.functor ⋙ F. In case Φ is a (left/right) derivability structure, this allows the construction of a derived functor for F relatively to W₂.

Equations
Instances For
    theorem CategoryTheory.LocalizerMorphism.Derives.isIso {C₁ : Type u₁} {C₂ : Type u₂} {H : Type u₃} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} H] {D₂ : Type u₄} [Category.{v₄, u₄} D₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} {Φ : LocalizerMorphism W₁ W₂} {F : Functor C₂ H} (h : Φ.Derives F) [Φ.IsRightDerivabilityStructure] {L₂ : Functor C₂ D₂} [L₂.IsLocalization W₂] {RF : Functor D₂ H} (α : F L₂.comp RF) (X₁ : C₁) [RF.IsRightDerivedFunctor α W₂] :
    IsIso (α.app (Φ.functor.obj X₁))
    theorem CategoryTheory.LocalizerMorphism.Derives.isRightDerivedFunctor_of_isIso {C₁ : Type u₁} {C₂ : Type u₂} {H : Type u₃} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} H] {D₂ : Type u₄} [Category.{v₄, u₄} D₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} {Φ : LocalizerMorphism W₁ W₂} {F : Functor C₂ H} (h : Φ.Derives F) [Φ.IsRightDerivabilityStructure] {L₂ : Functor C₂ D₂} [L₂.IsLocalization W₂] {RF : Functor D₂ H} (α : F L₂.comp RF) ( : ∀ (X₁ : C₁), IsIso (α.app (Φ.functor.obj X₁))) :
    theorem CategoryTheory.LocalizerMorphism.Derives.isRightDerivedFunctor_iff_isIso {C₁ : Type u₁} {C₂ : Type u₂} {H : Type u₃} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} H] {D₂ : Type u₄} [Category.{v₄, u₄} D₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} {Φ : LocalizerMorphism W₁ W₂} {F : Functor C₂ H} (h : Φ.Derives F) [Φ.IsRightDerivabilityStructure] {L₂ : Functor C₂ D₂} [L₂.IsLocalization W₂] {RF : Functor D₂ H} (α : F L₂.comp RF) :
    RF.IsRightDerivedFunctor α W₂ ∀ (X₁ : C₁), IsIso (α.app (Φ.functor.obj X₁))