Documentation

Mathlib.CategoryTheory.Localization.Pi

Localization of product categories #

In this file, it is shown that if for all j : J (with J finite), functors L j : C j ⥤ D j are localization functors with respect to a class of morphisms W j : MorphismProperty (C j), then the product functor Functor.pi L : (∀ j, C j) ⥤ ∀ j, D j is a localization functor for the product class of morphisms MorphismProperty.pi W. The proof proceeds by induction on the cardinal of J using the main result of the file Mathlib.CategoryTheory.Localization.Prod.

instance CategoryTheory.Functor.IsLocalization.pi {J : Type w} [Finite J] {C : JType u₁} {D : JType u₂} [(j : J) → Category.{v₁, u₁} (C j)] [(j : J) → Category.{v₂, u₂} (D j)] (L : (j : J) → Functor (C j) (D j)) (W : (j : J) → MorphismProperty (C j)) [∀ (j : J), (W j).ContainsIdentities] [∀ (j : J), (L j).IsLocalization (W j)] :
(Functor.pi L).IsLocalization (MorphismProperty.pi W)
instance CategoryTheory.Functor.IsLocalization.instDiscreteObjWhiskeringRightFunctorCategoryOfFiniteOfContainsIdentities {J : Type} [Finite J] {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (L : Functor C D) (W : MorphismProperty C) [W.ContainsIdentities] [L.IsLocalization W] :
((whiskeringRight (Discrete J) C D).obj L).IsLocalization (W.functorCategory (Discrete J))

If L : C ⥤ D is a localization functor for W : MorphismProperty C, then the induced functor (Discrete J ⥤ C) ⥤ (Discrete J ⥤ D) is also a localization for W.functorCategory (Discrete J) if W contains identities.