Documentation

Mathlib.CategoryTheory.Localization.SmallShiftedHom

Shrinking morphisms in localized categories equipped with shifts #

If C is a category equipped with a shift by an additive monoid M, and W : MorphismProperty C is compatible with the shift, we define a type-class HasSmallLocalizedShiftedHom.{w} W X Y which says that all the types of morphisms from X⟦a⟧ to Y⟦b⟧ in the localized category are w-small for a certain universe. Then, we define types SmallShiftedHom.{w} W X Y m : Type w for all m : M, and endow these with a composition which transports the composition on the types ShiftedHom (L.obj X) (L.obj Y) m when L : C ⥤ D is any localization functor for W.

@[reducible, inline]

Given objects X and Y in a category C, this is the property that all the types of morphisms from X⟦a⟧ to Y⟦b⟧ are w-small in the localized category with respect to a class of morphisms W.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Localization.hasSmallLocalizedShiftedHom_iff {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) (M : Type w') [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] (X Y : C) :
    HasSmallLocalizedShiftedHom W M X Y ∀ (a b : M), Small.{w, v₂} ((shiftFunctor D a).obj (L.obj X) (shiftFunctor D b).obj (L.obj Y))
    theorem CategoryTheory.Localization.hasSmallLocalizedShiftedHom_iff_target {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) (M : Type w') [AddMonoid M] [HasShift C M] (X : C) {Y : C} [W.IsCompatibleWithShift M] {Y' : C} (f : Y Y') (hf : W f) :
    theorem CategoryTheory.Localization.hasSmallLocalizedShiftedHom_iff_source {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) (M : Type w') [AddMonoid M] [HasShift C M] {X : C} [W.IsCompatibleWithShift M] {X' : C} (f : X X') (hf : W f) (Y : C) :
    noncomputable def CategoryTheory.Localization.SmallHom.shift {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y : C} [HasSmallLocalizedHom W X Y] (f : SmallHom W X Y) (a : M) [HasSmallLocalizedHom W ((shiftFunctor C a).obj X) ((shiftFunctor C a).obj Y)] :
    SmallHom W ((shiftFunctor C a).obj X) ((shiftFunctor C a).obj Y)

    Given f : SmallHom W X Y and a : M, this is the element in SmallHom W (X⟦a⟧) (Y⟦a⟧) obtained by shifting by a.

    Equations
    • f.shift a = (W.shiftLocalizerMorphism a).smallHomMap f
    Instances For
      theorem CategoryTheory.Localization.SmallHom.equiv_shift {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] [W.IsCompatibleWithShift M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [HasSmallLocalizedHom W X Y] (f : SmallHom W X Y) (a : M) [HasSmallLocalizedHom W ((shiftFunctor C a).obj X) ((shiftFunctor C a).obj Y)] :
      (equiv W L) (f.shift a) = CategoryStruct.comp ((L.commShiftIso a).hom.app X) (CategoryStruct.comp ((shiftFunctor D a).map ((equiv W L) f)) ((L.commShiftIso a).inv.app Y))

      The type of morphisms from X to Y⟦m⟧ in the localized category with respect to W : MorphismProperty C that is shrunk to Type w when HasSmallLocalizedShiftedHom.{w} W X Y holds.

      Equations
      Instances For
        noncomputable def CategoryTheory.Localization.SmallShiftedHom.shift {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y : C} {a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Y] (f : SmallShiftedHom W X Y a) (n a' : M) (h : a + n = a') :
        SmallHom W ((shiftFunctor C n).obj X) ((shiftFunctor C a').obj Y)

        Given f : SmallShiftedHom.{w} W X Y a, this is the element in SmallHom.{w} W (X⟦n⟧) (Y⟦a'⟧) that is obtained by shifting by n when a + n = a'.

        Equations
        Instances For
          noncomputable def CategoryTheory.Localization.SmallShiftedHom.comp {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y Z : C} {a b c : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Z] [HasSmallLocalizedShiftedHom W M X Z] [HasSmallLocalizedShiftedHom W M Z Z] (f : SmallShiftedHom W X Y a) (g : SmallShiftedHom W Y Z b) (h : b + a = c) :

          The composition on SmallShiftedHom W.

          Equations
          Instances For
            noncomputable def CategoryTheory.Localization.SmallShiftedHom.mk₀ {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] (m₀ : M) (hm₀ : m₀ = 0) (f : X Y) :
            SmallShiftedHom W X Y m₀

            The canonical map (X ⟶ Y) → SmallShiftedHom.{w} W X Y m₀ when m₀ = 0 and [HasSmallLocalizedShiftedHom.{w} W M X Y] holds.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              noncomputable def CategoryTheory.Localization.SmallShiftedHom.equiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] {m : M} :
              SmallShiftedHom W X Y m ShiftedHom (L.obj X) (L.obj Y) m

              The bijection SmallShiftedHom.{w} W X Y m ≃ ShiftedHom (L.obj X) (L.obj Y) m for all m : M, and X and Y in C when L : C ⥤ D is a localization functor for W : MorphismProperty C such that the category D is equipped with a shift by M and L commutes with the shifts.

              Equations
              Instances For
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_shift' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [W.IsCompatibleWithShift M] {a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Y] (f : SmallShiftedHom W X Y a) (n a' : M) (h : a + n = a') :
                (SmallHom.equiv W L) (f.shift n a' h) = CategoryStruct.comp ((L.commShiftIso n).hom.app X) (CategoryStruct.comp ((shiftFunctor D n).map ((SmallHom.equiv W L) f)) (CategoryStruct.comp ((shiftFunctor D n).map ((L.commShiftIso a).hom.app Y)) (CategoryStruct.comp ((shiftFunctorAdd' D a n a' h).inv.app (L.obj Y)) ((L.commShiftIso a').inv.app Y))))
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_shift {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [W.IsCompatibleWithShift M] {a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Y] (f : SmallShiftedHom W X Y a) (n a' : M) (h : a + n = a') :
                (equiv W L) (f.shift n a' h) = CategoryStruct.comp ((L.commShiftIso n).hom.app X) (CategoryStruct.comp ((shiftFunctor D n).map ((equiv W L) f)) ((shiftFunctorAdd' D a n a' h).inv.app (L.obj Y)))
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y Z : C} [W.IsCompatibleWithShift M] [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Z] [HasSmallLocalizedShiftedHom W M X Z] [HasSmallLocalizedShiftedHom W M Z Z] {a b c : M} (f : SmallShiftedHom W X Y a) (g : SmallShiftedHom W Y Z b) (h : b + a = c) :
                (equiv W L) (f.comp g h) = ((equiv W L) f).comp ((equiv W L) g) h
                @[simp]
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_mk₀ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] (m₀ : M) (hm₀ : m₀ = 0) (f : X Y) :
                (equiv W L) (mk₀ W m₀ hm₀ f) = ShiftedHom.mk₀ m₀ hm₀ (L.map f)
                theorem CategoryTheory.Localization.SmallShiftedHom.comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y Z T : C} {a₁ a₂ a₃ a₁₂ a₂₃ a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M X Z] [HasSmallLocalizedShiftedHom W M X T] [HasSmallLocalizedShiftedHom W M Y Z] [HasSmallLocalizedShiftedHom W M Y T] [HasSmallLocalizedShiftedHom W M Z T] [HasSmallLocalizedShiftedHom W M Z Z] [HasSmallLocalizedShiftedHom W M T T] (α : SmallShiftedHom W X Y a₁) (β : SmallShiftedHom W Y Z a₂) (γ : SmallShiftedHom W Z T a₃) (h₁₂ : a₂ + a₁ = a₁₂) (h₂₃ : a₃ + a₂ = a₂₃) (h : a₃ + a₂ + a₁ = a) :
                (α.comp β h₁₂).comp γ = α.comp (β.comp γ h₂₃)

                Up to an equivalence, the type SmallShiftedHom.{w} W X Y m does not depend on the universe w.

                Equations
                Instances For
                  theorem CategoryTheory.Localization.SmallShiftedHom.equiv_chgUniv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} {m : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M X Y] (e : SmallShiftedHom W X Y m) :
                  (equiv W L) (chgUniv e) = (equiv W L) e