Documentation

Mathlib.CategoryTheory.Localization.SmallShiftedHom

Shrinking morphisms in localized categories equipped with shifts #

If C is a category equipped with a shift by an additive monoid M, and W : MorphismProperty C is compatible with the shift, we define a type-class HasSmallLocalizedShiftedHom.{w} W X Y which says that all the types of morphisms from X⟦a⟧ to Y⟦b⟧ in the localized category are w-small for a certain universe. Then, we define types SmallShiftedHom.{w} W X Y m : Type w for all m : M, and endow these with a composition which transports the composition on the types ShiftedHom (L.obj X) (L.obj Y) m when L : C ⥤ D is any localization functor for W.

@[reducible, inline]

Given objects X and Y in a category C, this is the property that all the types of morphisms from X⟦a⟧ to Y⟦b⟧ are w-small in the localized category with respect to a class of morphisms W.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def CategoryTheory.Localization.SmallHom.shift {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y : C} [HasSmallLocalizedHom W X Y] (f : SmallHom W X Y) (a : M) [HasSmallLocalizedHom W ((shiftFunctor C a).obj X) ((shiftFunctor C a).obj Y)] :
    SmallHom W ((shiftFunctor C a).obj X) ((shiftFunctor C a).obj Y)

    Given f : SmallHom W X Y and a : M, this is the element in SmallHom W (X⟦a⟧) (Y⟦a⟧) obtained by shifting by a.

    Equations
    Instances For

      The type of morphisms from X to Y⟦m⟧ in the localized category with respect to W : MorphismProperty C that is shrunk to Type w when HasSmallLocalizedShiftedHom.{w} W X Y holds.

      Equations
      Instances For
        noncomputable def CategoryTheory.Localization.SmallShiftedHom.shift {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y : C} {a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Y] (f : SmallShiftedHom W X Y a) (n a' : M) (h : a + n = a') :
        SmallHom W ((shiftFunctor C n).obj X) ((shiftFunctor C a').obj Y)

        Given f : SmallShiftedHom.{w} W X Y a, this is the element in SmallHom.{w} W (X⟦n⟧) (Y⟦a'⟧) that is obtained by shifting by n when a + n = a'.

        Equations
        Instances For
          noncomputable def CategoryTheory.Localization.SmallShiftedHom.comp {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y Z : C} {a b c : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Z] [HasSmallLocalizedShiftedHom W M X Z] [HasSmallLocalizedShiftedHom W M Z Z] (f : SmallShiftedHom W X Y a) (g : SmallShiftedHom W Y Z b) (h : b + a = c) :

          The composition on SmallShiftedHom W.

          Equations
          Instances For
            noncomputable def CategoryTheory.Localization.SmallShiftedHom.mk₀ {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] (m₀ : M) (hm₀ : m₀ = 0) (f : X Y) :
            SmallShiftedHom W X Y m₀

            The canonical map (X ⟶ Y) → SmallShiftedHom.{w} W X Y m₀ when m₀ = 0 and [HasSmallLocalizedShiftedHom.{w} W M X Y] holds.

            Equations
            Instances For
              noncomputable def CategoryTheory.Localization.SmallShiftedHom.equiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] {m : M} :
              SmallShiftedHom W X Y m ShiftedHom (L.obj X) (L.obj Y) m

              The bijection SmallShiftedHom.{w} W X Y m ≃ ShiftedHom (L.obj X) (L.obj Y) m for all m : M, and X and Y in C when L : C ⥤ D is a localization functor for W : MorphismProperty C such that the category D is equipped with a shift by M and L commutes with the shifts.

              Equations
              Instances For
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_shift {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [W.IsCompatibleWithShift M] {a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Y] (f : SmallShiftedHom W X Y a) (n a' : M) (h : a + n = a') :
                (equiv W L) (f.shift n a' h) = CategoryStruct.comp ((Functor.commShiftIso L n).hom.app X) (CategoryStruct.comp ((shiftFunctor D n).map ((equiv W L) f)) ((shiftFunctorAdd' D a n a' h).inv.app (L.obj Y)))
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y Z : C} [W.IsCompatibleWithShift M] [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M Y Z] [HasSmallLocalizedShiftedHom W M X Z] [HasSmallLocalizedShiftedHom W M Z Z] {a b c : M} (f : SmallShiftedHom W X Y a) (g : SmallShiftedHom W Y Z b) (h : b + a = c) :
                (equiv W L) (f.comp g h) = ((equiv W L) f).comp ((equiv W L) g) h
                @[simp]
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_mk {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] {m : M} (f : ShiftedHom X Y m) :
                (equiv W L) (mk W f) = f.map L
                @[simp]
                theorem CategoryTheory.Localization.SmallShiftedHom.equiv_mk₀ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [HasShift D M] (L : Functor C D) [L.IsLocalization W] [L.CommShift M] {X Y : C} [HasSmallLocalizedShiftedHom W M X Y] (m₀ : M) (hm₀ : m₀ = 0) (f : X Y) :
                (equiv W L) (mk₀ W m₀ hm₀ f) = ShiftedHom.mk₀ m₀ hm₀ (L.map f)
                theorem CategoryTheory.Localization.SmallShiftedHom.comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {M : Type w'} [AddMonoid M] [HasShift C M] [W.IsCompatibleWithShift M] {X Y Z T : C} {a₁ a₂ a₃ a₁₂ a₂₃ a : M} [HasSmallLocalizedShiftedHom W M X Y] [HasSmallLocalizedShiftedHom W M X Z] [HasSmallLocalizedShiftedHom W M X T] [HasSmallLocalizedShiftedHom W M Y Z] [HasSmallLocalizedShiftedHom W M Y T] [HasSmallLocalizedShiftedHom W M Z T] [HasSmallLocalizedShiftedHom W M Z Z] [HasSmallLocalizedShiftedHom W M T T] (α : SmallShiftedHom W X Y a₁) (β : SmallShiftedHom W Y Z a₂) (γ : SmallShiftedHom W Z T a₃) (h₁₂ : a₂ + a₁ = a₁₂) (h₂₃ : a₃ + a₂ = a₂₃) (h : a₃ + a₂ + a₁ = a) :
                (α.comp β h₁₂).comp γ = α.comp (β.comp γ h₂₃)

                Up to an equivalence, the type SmallShiftedHom.{w} W X Y m does not depend on the universe w.

                Equations
                Instances For
                  noncomputable def CategoryTheory.LocalizerMorphism.smallShiftedHomMap {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {C₂ : Type u₂} [Category.{v₂, u₂} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type w'} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {X₁ Y₁ : C₁} {X₂ Y₂ : C₂} [Localization.HasSmallLocalizedShiftedHom W₁ M X₁ Y₁] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ X₂] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ Y₂] [Localization.HasSmallLocalizedShiftedHom W₂ M Y₂ Y₂] (eX : Φ.functor.obj X₁ X₂) (eY : Φ.functor.obj Y₁ Y₂) {m : M} (f : Localization.SmallShiftedHom W₁ X₁ Y₁ m) :

                  The action of a localizer morphism Φ on SmallShiftedHom.

                  Equations
                  Instances For
                    theorem CategoryTheory.LocalizerMorphism.equiv_smallShiftedHomMap {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {C₂ : Type u₂} [Category.{v₂, u₂} C₂] {D₁ : Type u₁'} [Category.{v₁', u₁'} D₁] {D₂ : Type u₂'} [Category.{v₂', u₂'} D₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) (L₁ : Functor C₁ D₁) (L₂ : Functor C₂ D₂) [L₁.IsLocalization W₁] [L₂.IsLocalization W₂] {M : Type w'} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] [Φ.functor.CommShift M] {X₁ Y₁ : C₁} {X₂ Y₂ : C₂} [Localization.HasSmallLocalizedShiftedHom W₁ M X₁ Y₁] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ X₂] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ Y₂] [Localization.HasSmallLocalizedShiftedHom W₂ M Y₂ Y₂] (eX : Φ.functor.obj X₁ X₂) (eY : Φ.functor.obj Y₁ Y₂) (G : Functor D₁ D₂) [G.CommShift M] (e : Φ.functor.comp L₂ L₁.comp G) [NatTrans.CommShift e.hom M] {m : M} (f : Localization.SmallShiftedHom W₁ X₁ Y₁ m) :
                    (Localization.SmallShiftedHom.equiv W₂ L₂) (Φ.smallShiftedHomMap eX eY f) = (ShiftedHom.mk₀ 0 (CategoryStruct.comp (L₂.map eX.inv) (e.hom.app X₁))).comp ((((Localization.SmallShiftedHom.equiv W₁ L₁) f).map G).comp (ShiftedHom.mk₀ 0 (CategoryStruct.comp (e.inv.app Y₁) (L₂.map eY.hom))) )
                    @[simp]
                    theorem CategoryTheory.LocalizerMorphism.smallShiftedHomMap_mk {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {C₂ : Type u₂} [Category.{v₂, u₂} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type w'} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {X₁ Y₁ : C₁} {X₂ Y₂ : C₂} [Localization.HasSmallLocalizedShiftedHom W₁ M X₁ Y₁] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ X₂] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ Y₂] [Localization.HasSmallLocalizedShiftedHom W₂ M Y₂ Y₂] (eX : Φ.functor.obj X₁ X₂) (eY : Φ.functor.obj Y₁ Y₂) [W₁.IsCompatibleWithShift M] [W₂.IsCompatibleWithShift M] {m : M} (f : ShiftedHom X₁ Y₁ m) :
                    theorem CategoryTheory.LocalizerMorphism.smallShiftedHomMap_mk₀ {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {C₂ : Type u₂} [Category.{v₂, u₂} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type w'} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {X₁ Y₁ : C₁} {X₂ Y₂ : C₂} [Localization.HasSmallLocalizedShiftedHom W₁ M X₁ Y₁] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ X₂] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ Y₂] [Localization.HasSmallLocalizedShiftedHom W₂ M Y₂ Y₂] (eX : Φ.functor.obj X₁ X₂) (eY : Φ.functor.obj Y₁ Y₂) [W₁.IsCompatibleWithShift M] [W₂.IsCompatibleWithShift M] (m₀ : M) (hm₀ : m₀ = 0) (f : X₁ Y₁) :
                    theorem CategoryTheory.LocalizerMorphism.smallShiftedHomMap_comp {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {C₂ : Type u₂} [Category.{v₂, u₂} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type w'} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {X₁ Y₁ Z₁ : C₁} {X₂ Y₂ Z₂ : C₂} [Localization.HasSmallLocalizedShiftedHom W₁ M X₁ Y₁] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ X₂] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ Y₂] [Localization.HasSmallLocalizedShiftedHom W₂ M Y₂ Y₂] (eX : Φ.functor.obj X₁ X₂) (eY : Φ.functor.obj Y₁ Y₂) (eZ : Φ.functor.obj Z₁ Z₂) [W₁.IsCompatibleWithShift M] [W₂.IsCompatibleWithShift M] [Localization.HasSmallLocalizedShiftedHom W₁ M Y₁ Z₁] [Localization.HasSmallLocalizedShiftedHom W₂ M Z₂ Z₂] [Localization.HasSmallLocalizedShiftedHom W₂ M Y₂ Z₂] [Localization.HasSmallLocalizedShiftedHom W₁ M X₁ Z₁] [Localization.HasSmallLocalizedShiftedHom W₁ M Z₁ Z₁] [Localization.HasSmallLocalizedShiftedHom W₂ M X₂ Z₂] {a b c : M} (f : Localization.SmallShiftedHom W₁ X₁ Y₁ a) (g : Localization.SmallShiftedHom W₁ Y₁ Z₁ b) (h : b + a = c) :
                    Φ.smallShiftedHomMap eX eZ (f.comp g h) = (Φ.smallShiftedHomMap eX eY f).comp (Φ.smallShiftedHomMap eY eZ g) h