Monoids as discrete monoidal categories #
The discrete category on a monoid is a monoidal category. Multiplicative morphisms induced monoidal functors.
Equations
- CategoryTheory.Discrete.monoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- CategoryTheory.Discrete.addMonoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_associator
(M : Type u)
[AddMonoid M]
(x✝ x✝¹ x✝² : Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_leftUnitor
(M : Type u)
[AddMonoid M]
(X : Discrete M)
:
@[simp]
@[simp]
theorem
CategoryTheory.Discrete.monoidal_associator
(M : Type u)
[Monoid M]
(x✝ x✝¹ x✝² : Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_rightUnitor
(M : Type u)
[AddMonoid M]
(X : Discrete M)
:
def
CategoryTheory.Discrete.monoidalFunctor
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
A multiplicative morphism between monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- CategoryTheory.Discrete.monoidalFunctor F = CategoryTheory.Discrete.functor fun (X : M) => { as := F X }
Instances For
def
CategoryTheory.Discrete.addMonoidalFunctor
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
An additive morphism between add_monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- CategoryTheory.Discrete.addMonoidalFunctor F = CategoryTheory.Discrete.functor fun (X : M) => { as := F X }