Monoids as discrete monoidal categories #
The discrete category on a monoid is a monoidal category. Multiplicative morphisms induced monoidal functors.
Equations
- CategoryTheory.Discrete.monoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- CategoryTheory.Discrete.addMonoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_tensorObj_as
(M : Type u)
[AddMonoid M]
(X Y : CategoryTheory.Discrete M)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).as = X.as + Y.as
@[simp]
theorem
CategoryTheory.Discrete.monoidal_leftUnitor
(M : Type u)
[Monoid M]
(X : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_associator
(M : Type u)
[AddMonoid M]
(x✝ x✝¹ x✝² : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_leftUnitor
(M : Type u)
[AddMonoid M]
(X : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidal_tensorObj_as
(M : Type u)
[Monoid M]
(X Y : CategoryTheory.Discrete M)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).as = X.as * Y.as
@[simp]
theorem
CategoryTheory.Discrete.monoidal_rightUnitor
(M : Type u)
[Monoid M]
(X : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidal_associator
(M : Type u)
[Monoid M]
(x✝ x✝¹ x✝² : CategoryTheory.Discrete M)
:
@[simp]
@[simp]
theorem
CategoryTheory.Discrete.monoidal_tensorUnit_as
(M : Type u)
[Monoid M]
:
(𝟙_ (CategoryTheory.Discrete M)).as = 1
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_tensorUnit_as
(M : Type u)
[AddMonoid M]
:
(𝟙_ (CategoryTheory.Discrete M)).as = 0
def
CategoryTheory.Discrete.monoidalFunctor
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
A multiplicative morphism between monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- CategoryTheory.Discrete.monoidalFunctor F = CategoryTheory.Discrete.functor fun (X : M) => { as := F X }
Instances For
def
CategoryTheory.Discrete.addMonoidalFunctor
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
An additive morphism between add_monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- CategoryTheory.Discrete.addMonoidalFunctor F = CategoryTheory.Discrete.functor fun (X : M) => { as := F X }
Instances For
@[simp]
theorem
CategoryTheory.Discrete.monoidalFunctor_obj
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(m : M)
:
(CategoryTheory.Discrete.monoidalFunctor F).obj { as := m } = { as := F m }
@[simp]
theorem
CategoryTheory.Discrete.addMonoidalFunctor_obj
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(m : M)
:
(CategoryTheory.Discrete.addMonoidalFunctor F).obj { as := m } = { as := F m }
instance
CategoryTheory.Discrete.monoidalFunctorMonoidal
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
(CategoryTheory.Discrete.monoidalFunctor F).Monoidal
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Discrete.addMonoidalFunctorMonoidal
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
(CategoryTheory.Discrete.addMonoidalFunctor F).Monoidal
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.Discrete.monoidalFunctor_μ
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(m₁ m₂ : CategoryTheory.Discrete M)
:
theorem
CategoryTheory.Discrete.addMonoidalFunctor_μ
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(m₁ m₂ : CategoryTheory.Discrete M)
:
theorem
CategoryTheory.Discrete.monoidalFunctor_δ
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(m₁ m₂ : CategoryTheory.Discrete M)
:
theorem
CategoryTheory.Discrete.addMonoidalFunctor_δ
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(m₁ m₂ : CategoryTheory.Discrete M)
: