Monoids as discrete monoidal categories #
The discrete category on a monoid is a monoidal category. Multiplicative morphisms induced monoidal functors.
Equations
- CategoryTheory.Discrete.monoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- CategoryTheory.Discrete.addMonoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_tensorObj_as
(M : Type u)
[AddMonoid M]
(X Y : Discrete M)
:
(MonoidalCategoryStruct.tensorObj X Y).as = X.as + Y.as
@[simp]
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_associator
(M : Type u)
[AddMonoid M]
(x✝ x✝¹ x✝² : Discrete M)
:
MonoidalCategoryStruct.associator x✝ x✝¹ x✝² = Discrete.eqToIso ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_leftUnitor
(M : Type u)
[AddMonoid M]
(X : Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidal_tensorObj_as
(M : Type u)
[Monoid M]
(X Y : Discrete M)
:
(MonoidalCategoryStruct.tensorObj X Y).as = X.as * Y.as
@[simp]
@[simp]
theorem
CategoryTheory.Discrete.monoidal_associator
(M : Type u)
[Monoid M]
(x✝ x✝¹ x✝² : Discrete M)
:
MonoidalCategoryStruct.associator x✝ x✝¹ x✝² = Discrete.eqToIso ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_rightUnitor
(M : Type u)
[AddMonoid M]
(X : Discrete M)
:
def
CategoryTheory.Discrete.monoidalFunctor
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
A multiplicative morphism between monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- CategoryTheory.Discrete.monoidalFunctor F = CategoryTheory.Discrete.functor fun (X : M) => { as := F X }
Instances For
def
CategoryTheory.Discrete.addMonoidalFunctor
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
An additive morphism between add_monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- CategoryTheory.Discrete.addMonoidalFunctor F = CategoryTheory.Discrete.functor fun (X : M) => { as := F X }
Instances For
@[simp]
theorem
CategoryTheory.Discrete.monoidalFunctor_obj
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(m : M)
:
(monoidalFunctor F).obj { as := m } = { as := F m }
@[simp]
theorem
CategoryTheory.Discrete.addMonoidalFunctor_obj
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(m : M)
:
(addMonoidalFunctor F).obj { as := m } = { as := F m }
instance
CategoryTheory.Discrete.monoidalFunctorMonoidal
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
(monoidalFunctor F).Monoidal
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Discrete.addMonoidalFunctorMonoidal
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
(addMonoidalFunctor F).Monoidal
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.Discrete.monoidalFunctor_μ
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(m₁ m₂ : Discrete M)
:
Functor.LaxMonoidal.μ (monoidalFunctor F) m₁ m₂ = Discrete.eqToHom ⋯
theorem
CategoryTheory.Discrete.addMonoidalFunctor_μ
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(m₁ m₂ : Discrete M)
:
Functor.LaxMonoidal.μ (addMonoidalFunctor F) m₁ m₂ = Discrete.eqToHom ⋯
theorem
CategoryTheory.Discrete.monoidalFunctor_δ
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(m₁ m₂ : Discrete M)
:
Functor.OplaxMonoidal.δ (monoidalFunctor F) m₁ m₂ = Discrete.eqToHom ⋯
theorem
CategoryTheory.Discrete.addMonoidalFunctor_δ
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(m₁ m₂ : Discrete M)
:
Functor.OplaxMonoidal.δ (addMonoidalFunctor F) m₁ m₂ = Discrete.eqToHom ⋯
def
CategoryTheory.Discrete.monoidalFunctorComp
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
{K : Type u}
[Monoid K]
(F : M →* N)
(G : N →* K)
:
(monoidalFunctor F).comp (monoidalFunctor G) ≅ monoidalFunctor (G.comp F)
The monoidal natural isomorphism corresponding to composing two multiplicative morphisms.
Equations
Instances For
def
CategoryTheory.Discrete.addMonoidalFunctorComp
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
{K : Type u}
[AddMonoid K]
(F : M →+ N)
(G : N →+ K)
:
(addMonoidalFunctor F).comp (addMonoidalFunctor G) ≅ addMonoidalFunctor (G.comp F)
The monoidal natural isomorphism corresponding to composing two additive morphisms.
Equations
Instances For
instance
CategoryTheory.Discrete.monoidalFunctorComp_isMonoidal
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
{K : Type u}
[Monoid K]
(F : M →* N)
(G : N →* K)
:
NatTrans.IsMonoidal (monoidalFunctorComp F G).hom
instance
CategoryTheory.Discrete.addMonoidalFunctorComp_isMonoidal
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
{K : Type u}
[AddMonoid K]
(F : M →+ N)
(G : N →+ K)
:
NatTrans.IsMonoidal (addMonoidalFunctorComp F G).hom