Documentation

Mathlib.CategoryTheory.Monoidal.Rigid.OfEquivalence

Transport rigid structures over a monoidal equivalence. #

def CategoryTheory.exactPairingOfFaithful {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] (F : Functor C D) [F.Monoidal] [F.Faithful] {X Y : C} (eval : MonoidalCategoryStruct.tensorObj Y X 𝟙_ C) (coeval : 𝟙_ C MonoidalCategoryStruct.tensorObj X Y) [ExactPairing (F.obj X) (F.obj Y)] (map_eval : F.map eval = CategoryStruct.comp (Functor.OplaxMonoidal.δ F Y X) (CategoryStruct.comp (ε_ (F.obj X) (F.obj Y)) (Functor.LaxMonoidal.ε F))) (map_coeval : F.map coeval = CategoryStruct.comp (Functor.OplaxMonoidal.η F) (CategoryStruct.comp (η_ (F.obj X) (F.obj Y)) (Functor.LaxMonoidal.μ F X Y))) :

Given candidate data for an exact pairing, which is sent by a faithful monoidal functor to an exact pairing, the equations holds automatically.

Equations
Instances For
    def CategoryTheory.exactPairingOfFullyFaithful {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] (F : Functor C D) [F.Monoidal] [F.Full] [F.Faithful] (X Y : C) [ExactPairing (F.obj X) (F.obj Y)] :

    Given a pair of objects which are sent by a fully faithful functor to a pair of objects with an exact pairing, we get an exact pairing.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.hasLeftDualOfEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] {F : Functor C D} [F.Monoidal] {G : Functor D C} (adj : F G) [F.IsEquivalence] (X : C) [HasLeftDual (F.obj X)] :

      Pull back a left dual along an equivalence.

      Equations
      Instances For
        def CategoryTheory.hasRightDualOfEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] {F : Functor C D} [F.Monoidal] {G : Functor D C} (adj : F G) [F.IsEquivalence] (X : C) [HasRightDual (F.obj X)] :

        Pull back a right dual along an equivalence.

        Equations
        Instances For
          def CategoryTheory.leftRigidCategoryOfEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] {F : Functor C D} [F.Monoidal] {G : Functor D C} (adj : F G) [F.IsEquivalence] [LeftRigidCategory D] :

          Pull back a left rigid structure along an equivalence.

          Equations
          Instances For
            def CategoryTheory.rightRigidCategoryOfEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] {F : Functor C D} [F.Monoidal] {G : Functor D C} (adj : F G) [F.IsEquivalence] [RightRigidCategory D] :

            Pull back a right rigid structure along an equivalence.

            Equations
            Instances For
              def CategoryTheory.rigidCategoryOfEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [MonoidalCategory C] [MonoidalCategory D] {F : Functor C D} [F.Monoidal] {G : Functor D C} (adj : F G) [F.IsEquivalence] [RigidCategory D] :

              Pull back a rigid structure along an equivalence.

              Equations
              Instances For