Transport a monoidal structure along an equivalence. #
When C
and D
are equivalent as categories,
we can transport a monoidal structure on C
along the equivalence as
CategoryTheory.Monoidal.transport
, obtaining a monoidal structure on D
.
More generally, we can transport the lawfulness of a monoidal structure along a suitable faithful
functor, as CategoryTheory.Monoidal.induced
.
The comparison is analogous to the difference between Equiv.monoid
and
Function.Injective.monoid
.
We then upgrade the original functor and its inverse to monoidal functors
with respect to the new monoidal structure on D
.
The data needed to induce a MonoidalCategory
via the functor F
; namely, pre-existing
definitions of ⊗
, 𝟙_
, ▷
, ◁
that are preserved by F
.
- μIso (X Y : D) : Iso (MonoidalCategoryStruct.tensorObj (F.obj X) (F.obj Y)) (F.obj (MonoidalCategoryStruct.tensorObj X Y))
Analogous to
CategoryTheory.LaxMonoidalFunctor.μIso
- whiskerLeft_eq (X : D) {Y₁ Y₂ : D} (f : Quiver.Hom Y₁ Y₂) : Eq (F.map (MonoidalCategoryStruct.whiskerLeft X f)) (CategoryStruct.comp (self.μIso X Y₁).inv (CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (F.obj X) (F.map f)) (self.μIso X Y₂).hom))
- whiskerRight_eq {X₁ X₂ : D} (f : Quiver.Hom X₁ X₂) (Y : D) : Eq (F.map (MonoidalCategoryStruct.whiskerRight f Y)) (CategoryStruct.comp (self.μIso X₁ Y).inv (CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight (F.map f) (F.obj Y)) (self.μIso X₂ Y).hom))
- tensorHom_eq {X₁ Y₁ X₂ Y₂ : D} (f : Quiver.Hom X₁ Y₁) (g : Quiver.Hom X₂ Y₂) : Eq (F.map (MonoidalCategoryStruct.tensorHom f g)) (CategoryStruct.comp (self.μIso X₁ X₂).inv (CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F.map f) (F.map g)) (self.μIso Y₁ Y₂).hom))
Analogous to
CategoryTheory.LaxMonoidalFunctor.εIso
- associator_eq (X Y Z : D) : Eq (F.map (MonoidalCategoryStruct.associator X Y Z).hom) (((self.μIso (MonoidalCategoryStruct.tensorObj X Y) Z).symm.trans (MonoidalCategory.tensorIso (self.μIso X Y).symm (Iso.refl (F.obj Z)))).trans ((MonoidalCategoryStruct.associator (F.obj X) (F.obj Y) (F.obj Z)).trans ((MonoidalCategory.tensorIso (Iso.refl (F.obj X)) (self.μIso Y Z)).trans (self.μIso X (MonoidalCategoryStruct.tensorObj Y Z))))).hom
- leftUnitor_eq (X : D) : Eq (F.map (MonoidalCategoryStruct.leftUnitor X).hom) (((self.μIso MonoidalCategoryStruct.tensorUnit X).symm.trans (MonoidalCategory.tensorIso self.εIso.symm (Iso.refl (F.obj X)))).trans (MonoidalCategoryStruct.leftUnitor (F.obj X))).hom
- rightUnitor_eq (X : D) : Eq (F.map (MonoidalCategoryStruct.rightUnitor X).hom) (((self.μIso X MonoidalCategoryStruct.tensorUnit).symm.trans (MonoidalCategory.tensorIso (Iso.refl (F.obj X)) self.εIso.symm)).trans (MonoidalCategoryStruct.rightUnitor (F.obj X))).hom
Instances For
Induce the lawfulness of the monoidal structure along an faithful functor of (plain) categories,
where the operations are already defined on the destination type D
.
The functor F
must preserve all the data parts of the monoidal structure between the two
categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A faithful functor equipped with a InducingFunctorData
structure is monoidal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
Instances For
Transport a monoidal structure along an equivalence of (plain) categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Transport a monoidal structure along an equivalence of (plain) categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A type synonym for D
, which will carry the transported monoidal structure.
Equations
Instances For
Instances For
Equations
Instances For
Equations
Instances For
Equations
Instances For
We upgrade the equivalence of categories e : C ≌ D
to a monoidal category
equivalence C ≌ Transported e
.
Equations
Instances For
Equations
Instances For
Equations
Instances For
Equations
Instances For
Equations
Instances For
The unit isomorphism upgrades to a monoidal isomorphism.
The counit isomorphism upgrades to a monoidal isomorphism.