The retract argument #
Let W₁
and W₂
be classes of morphisms in a category C
such that
any morphism can be factored as a morphism in W₁
followed by
a morphism in W₂
(this is HasFactorization W₁ W₂
).
If W₁
has the left lifting property with respect to W₂
(i.e. W₁ ≤ W₂.llp
, or equivalently W₂ ≤ W₁.rlp
),
then W₂.llp = W₁
if W₁
is stable under retracts,
and W₁.rlp = W₂
if W₂
is.
Reference #
- https://ncatlab.org/nlab/show/weak+factorization+system#retract_argument
noncomputable def
CategoryTheory.RetractArrow.ofLeftLiftingProperty
{C : Type u_1}
[Category.{u_2, u_1} C]
{X Y Z : C}
{f : X ⟶ Z}
{i : X ⟶ Y}
{p : Y ⟶ Z}
(h : CategoryStruct.comp i p = f)
[HasLiftingProperty f p]
:
RetractArrow f i
If i ≫ p = f
, and f
has the left lifting property with respect to p
,
then f
is a retract of i
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.RetractArrow.ofRightLiftingProperty
{C : Type u_1}
[Category.{u_2, u_1} C]
{X Y Z : C}
{f : X ⟶ Z}
{i : X ⟶ Y}
{p : Y ⟶ Z}
(h : CategoryStruct.comp i p = f)
[HasLiftingProperty i f]
:
RetractArrow f p
If i ≫ p = f
, and f
has the right lifting property with respect to i
,
then f
is a retract of p
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.MorphismProperty.llp_eq_of_le_llp_of_hasFactorization_of_isStableUnderRetracts
{C : Type u_1}
[Category.{u_2, u_1} C]
{W₁ W₂ : MorphismProperty C}
[W₁.HasFactorization W₂]
[W₁.IsStableUnderRetracts]
(h₁ : W₁ ≤ W₂.llp)
:
theorem
CategoryTheory.MorphismProperty.rlp_eq_of_le_rlp_of_hasFactorization_of_isStableUnderRetracts
{C : Type u_1}
[Category.{u_2, u_1} C]
{W₁ W₂ : MorphismProperty C}
[W₁.HasFactorization W₂]
[W₂.IsStableUnderRetracts]
(h₂ : W₂ ≤ W₁.rlp)
: