Left and right lifting properties #
Given a morphism property T
, we define the left and right lifting property with respect to T
.
We show that the left lifting property is stable under retracts, cobase change, coproducts, and composition, with dual statements for the right lifting property.
Given T : MorphismProperty C
, this is the class of morphisms that have the
left lifting property (llp) with respect to T
.
Equations
- T.llp f = ∀ ⦃X Y : C⦄ (g : X ⟶ Y), T g → CategoryTheory.HasLiftingProperty f g
Instances For
Given T : MorphismProperty C
, this is the class of morphisms that have the
right lifting property (rlp) with respect to T
.
Equations
- T.rlp f = ∀ ⦃X Y : C⦄ (g : X ⟶ Y), T g → CategoryTheory.HasLiftingProperty g f
Instances For
theorem
CategoryTheory.MorphismProperty.llp_of_isIso
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
{A B : C}
(i : A ⟶ B)
[IsIso i]
:
T.llp i
theorem
CategoryTheory.MorphismProperty.rlp_of_isIso
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
{X Y : C}
(f : X ⟶ Y)
[IsIso f]
:
T.rlp f
instance
CategoryTheory.MorphismProperty.llp_isStableUnderRetracts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.rlp_isStableUnderRetracts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.llp_isStableUnderCobaseChange
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.rlp_isStableUnderBaseChange
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.llp_isMultiplicative
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.rlp_isMultiplicative
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.llp_isStableUnderCoproductsOfShape
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
(J : Type u_1)
:
theorem
CategoryTheory.MorphismProperty.rlp_isStableUnderProductsOfShape
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
(J : Type u_1)
:
theorem
CategoryTheory.MorphismProperty.le_llp_iff_le_rlp
{C : Type u}
[Category.{v, u} C]
(T T' : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.llp_rlp_llp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.pushouts_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_pushouts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.colimitsOfShape_discrete_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
(J : Type w)
:
theorem
CategoryTheory.MorphismProperty.coproducts_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_coproducts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.retracts_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_retracts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
: