Documentation

Mathlib.CategoryTheory.MorphismProperty.WeakFactorizationSystem

Weak factorization systems #

In this file, we introduce the notion of weak factorization system, which is a property of two classes of morphisms W₁ and W₂ in a category C. The type class IsWeakFactorizationSystem W₁ W₂ asserts that W₁ is exactly W₂.llp, W₂ is exactly W₁.rlp, and any morphism in C can be factored a i ≫ p with W₁ i and W₂ p.

References #

Two classes of morphisms W₁ and W₂ in a category C form a weak factorization system if W₁ is exactly W₂.llp, W₂ is exactly W₁.rlp, and any morphism can be factored a i ≫ p with W₁ i and W₂ p.

Instances
    theorem CategoryTheory.MorphismProperty.IsWeakFactorizationSystem.mk' {C : Type u} [Category.{v, u} C] (W₁ W₂ : MorphismProperty C) [W₁.HasFactorization W₂] [W₁.IsStableUnderRetracts] [W₂.IsStableUnderRetracts] (h : ∀ {A B X Y : C} (i : A B) (p : X Y), W₁ iW₂ pHasLiftingProperty i p) :
    theorem CategoryTheory.MorphismProperty.hasLiftingProperty_of_wfs {C : Type u} [Category.{v, u} C] {W₁ W₂ : MorphismProperty C} [W₁.IsWeakFactorizationSystem W₂] {A B X Y : C} (i : A B) (p : X Y) (hi : W₁ i) (hp : W₂ p) :