Weak factorization systems #
In this file, we introduce the notion of weak factorization system,
which is a property of two classes of morphisms W₁
and W₂
in
a category C
. The type class IsWeakFactorizationSystem W₁ W₂
asserts
that W₁
is exactly W₂.llp
, W₂
is exactly W₁.rlp
,
and any morphism in C
can be factored a i ≫ p
with W₁ i
and W₂ p
.
References #
- https://ncatlab.org/nlab/show/weak+factorization+system
class
CategoryTheory.MorphismProperty.IsWeakFactorizationSystem
{C : Type u}
[Category.{v, u} C]
(W₁ W₂ : MorphismProperty C)
:
Two classes of morphisms W₁
and W₂
in a category C
form a weak
factorization system if W₁
is exactly W₂.llp
, W₂
is exactly W₁.rlp
,
and any morphism can be factored a i ≫ p
with W₁ i
and W₂ p
.
- hasFactorization : W₁.HasFactorization W₂
Instances
theorem
CategoryTheory.MorphismProperty.IsWeakFactorizationSystem.mk'
{C : Type u}
[Category.{v, u} C]
(W₁ W₂ : MorphismProperty C)
[W₁.HasFactorization W₂]
[W₁.IsStableUnderRetracts]
[W₂.IsStableUnderRetracts]
(h : ∀ {A B X Y : C} (i : A ⟶ B) (p : X ⟶ Y), W₁ i → W₂ p → HasLiftingProperty i p)
:
theorem
CategoryTheory.MorphismProperty.rlp_eq_of_wfs
{C : Type u}
[Category.{v, u} C]
(W₁ W₂ : MorphismProperty C)
[W₁.IsWeakFactorizationSystem W₂]
:
theorem
CategoryTheory.MorphismProperty.llp_eq_of_wfs
{C : Type u}
[Category.{v, u} C]
(W₁ W₂ : MorphismProperty C)
[W₁.IsWeakFactorizationSystem W₂]
:
theorem
CategoryTheory.MorphismProperty.hasLiftingProperty_of_wfs
{C : Type u}
[Category.{v, u} C]
{W₁ W₂ : MorphismProperty C}
[W₁.IsWeakFactorizationSystem W₂]
{A B X Y : C}
(i : A ⟶ B)
(p : X ⟶ Y)
(hi : W₁ i)
(hp : W₂ p)
: