Ind and pro-properties #
Given an object property P
, we define an object property ind P
that is satisfied for
X
if X
is a filtered colimit of Xᵢ
and Xᵢ
satisfies P
.
Main definitions #
CategoryTheory.ObjectProperty.ind
:X
satisfiesind P
ifX
is a filtered colimit ofXᵢ
forXᵢ
inP
.
Main results #
CategoryTheory.ObjectProperty.ind_ind
: IfP
implies finitely presentable, thenP.ind.ind = P.ind
.
TODOs: #
- Dualise to obtain
CategoryTheory.ObjectProperty.pro
.
X
satisfies ind P
if X
is a filtered colimit of Xᵢ
for Xᵢ
in P
.
Equations
- P.ind X = ∃ (J : Type ?u.32) (x : CategoryTheory.SmallCategory J) (_ : CategoryTheory.IsFiltered J) (pres : CategoryTheory.Limits.ColimitPresentation J X), ∀ (i : J), P (pres.diag.obj i)
Instances For
theorem
CategoryTheory.ObjectProperty.le_ind
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsInd
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
:
theorem
CategoryTheory.ObjectProperty.ind_ind
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
(h : P ≤ isFinitelyPresentable C)
[LocallySmall.{w, v, u} C]
:
ind
is idempotent if P
implies finitely presentable.