Documentation

Mathlib.CategoryTheory.ObjectProperty.Ind

Ind and pro-properties #

Given an object property P, we define an object property ind P that is satisfied for X if X is a filtered colimit of Xᵢ and Xᵢ satisfies P.

Main definitions #

Main results #

TODOs: #

X satisfies ind P if X is a filtered colimit of Xᵢ for Xᵢ in P.

Equations
Instances For

    ind is idempotent if P implies finitely presentable.

    theorem CategoryTheory.ObjectProperty.ind_iff_exists {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} (H : P isFinitelyPresentable C) [IsFinitelyAccessibleCategory C] {X : C} :
    P.ind X ∀ {Z : C} (g : Z X) [IsFinitelyPresentable Z], ∃ (W : C) (u : Z W) (v : W X), CategoryStruct.comp u v = g P W

    If C is finitely accessible and P implies finitely presentable, then X satisfies ind P if and only if every morphism Z ⟶ X from a finitely presentable object factors via an object satisfying P.