Presentation of a colimit of objects equipped with a presentation #
Main definition: #
CategoryTheory.Limits.ColimitPresentation.bind
: Given a colimit presentation ofX
and colimit presentations of the components, this is the colimit presentation over the sigma type.
def
CategoryTheory.Limits.ColimitPresentation.Total
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
(P : (j : J) → ColimitPresentation (I j) (D.obj j))
:
Type (max u_2 u_1)
The type underlying the category used in the construction of the composition
of colimit presentations. This is simply Σ j, I j
but with a different category structure.
Equations
- CategoryTheory.Limits.ColimitPresentation.Total P = ((j : J) × I j)
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.ColimitPresentation.Total.mk
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
(P : (j : J) → ColimitPresentation (I j) (D.obj j))
(i : J)
(k : I i)
:
Total P
Constructor for Total
to guide type checking.
Equations
Instances For
structure
CategoryTheory.Limits.ColimitPresentation.Total.Hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
(k l : Total P)
:
Type (max u_3 v)
Morphisms in the Total
category.
The underlying morphism in the first component.
A morphism in
C
.
Instances For
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.ext
{C : Type u}
{inst✝ : Category.{v, u} C}
{J : Type u_1}
{I : J → Type u_2}
{inst✝¹ : Category.{u_3, u_1} J}
{inst✝² : (j : J) → Category.{u_4, u_2} (I j)}
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{k l : Total P}
{x y : k.Hom l}
(base : x.base = y.base)
(hom : x.hom = y.hom)
:
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.ext_iff
{C : Type u}
{inst✝ : Category.{v, u} C}
{J : Type u_1}
{I : J → Type u_2}
{inst✝¹ : Category.{u_3, u_1} J}
{inst✝² : (j : J) → Category.{u_4, u_2} (I j)}
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{k l : Total P}
{x y : k.Hom l}
:
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.w_assoc
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{k l : Total P}
(self : k.Hom l)
{Z : C}
(h : D.obj l.fst ⟶ Z)
:
CategoryStruct.comp ((P k.fst).ι.app k.snd) (CategoryStruct.comp (D.map self.base) h) = CategoryStruct.comp self.hom (CategoryStruct.comp ((P l.fst).ι.app l.snd) h)
def
CategoryTheory.Limits.ColimitPresentation.Total.Hom.comp
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{k l m : Total P}
(f : k.Hom l)
(g : l.Hom m)
:
k.Hom m
Composition of morphisms in the Total
category.
Equations
- f.comp g = { base := CategoryTheory.CategoryStruct.comp f.base g.base, hom := CategoryTheory.CategoryStruct.comp f.hom g.hom, w := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.comp_hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{k l m : Total P}
(f : k.Hom l)
(g : l.Hom m)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.comp_base
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{k l m : Total P}
(f : k.Hom l)
(g : l.Hom m)
:
instance
CategoryTheory.Limits.ColimitPresentation.instCategoryTotal
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.id_hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
(x✝ : Total P)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.comp_base
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{X✝ Y✝ Z✝ : Total P}
(f : X✝.Hom Y✝)
(g : Y✝.Hom Z✝)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.id_base
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
(x✝ : Total P)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.comp_hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{X✝ Y✝ Z✝ : Total P}
(f : X✝.Hom Y✝)
(g : Y✝.Hom Z✝)
:
instance
CategoryTheory.Limits.ColimitPresentation.instLocallySmallTotal
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J → Type u_2}
[Category.{u_3, u_1} J]
[(j : J) → Category.{u_4, u_2} (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
[LocallySmall.{w, v, u} C]
[LocallySmall.{w, u_3, u_1} J]
:
theorem
CategoryTheory.Limits.ColimitPresentation.Total.exists_hom_of_hom
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
{j j' : J}
(i : I j)
(u : j ⟶ j')
[IsFiltered (I j')]
[IsFinitelyPresentable ((P j).diag.obj i)]
:
instance
CategoryTheory.Limits.ColimitPresentation.instNonemptyTotalOfIsFiltered
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
[IsFiltered J]
[∀ (j : J), IsFiltered (I j)]
:
instance
CategoryTheory.Limits.ColimitPresentation.instIsFilteredTotalOfIsFinitelyPresentableObjDiag
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{D : Functor J C}
{P : (j : J) → ColimitPresentation (I j) (D.obj j)}
[IsFiltered J]
[∀ (j : J), IsFiltered (I j)]
[∀ (j : J) (i : I j), IsFinitelyPresentable ((P j).diag.obj i)]
:
IsFiltered (Total P)
def
CategoryTheory.Limits.ColimitPresentation.bind
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) → ColimitPresentation (I j) (P.diag.obj j))
[∀ (j : J), IsFiltered (I j)]
[∀ (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
:
ColimitPresentation (Total Q) X
If P
is a colimit presentation over J
of X
and for every j
we are given a colimit
presentation Qⱼ
over I j
of the P.diag.obj j
, this is the refined colimit presentation of X
over Total Q
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.bind_ι_app
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) → ColimitPresentation (I j) (P.diag.obj j))
[∀ (j : J), IsFiltered (I j)]
[∀ (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
(k : Total Q)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.bind_diag_obj
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) → ColimitPresentation (I j) (P.diag.obj j))
[∀ (j : J), IsFiltered (I j)]
[∀ (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
(k : Total Q)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.bind_diag_map
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J → Type w}
[SmallCategory J]
[(j : J) → SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) → ColimitPresentation (I j) (P.diag.obj j))
[∀ (j : J), IsFiltered (I j)]
[∀ (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
{k l : Total Q}
(f : k ⟶ l)
: