Characterization of (pre)stacks for a precoverage #
Let F : LocallyDiscrete Cᵒᵖ ⥤ᵖ Cat be a pseudofunctor.
Assuming F is a prestack for a Grothendieck topology J,
we show that if f : X i ⟶ S and f' : X' j ⟶ S are two covering
families of morphisms in S such that the sieve generated by f' is
contained in the sieve generated by f, then the functor
F.DescentData f ⥤ F.DescentData f' is full.
TODO (@joelriou): show that the functor is also faithful, and deduce characterizations of (pre)stacks.
theorem
CategoryTheory.Pseudofunctor.DescentData.full_pullFunctor
{C : Type u}
[Category.{v, u} C]
(F : Pseudofunctor (LocallyDiscrete Cᵒᵖ) Cat)
{J : GrothendieckTopology C}
[F.IsPrestack J]
{ι : Type t}
{S : C}
{X : ι → C}
{f : (i : ι) → X i ⟶ S}
{ι' : Type t'}
{X' : ι' → C}
{f' : (j : ι') → X' j ⟶ S}
{α : ι' → ι}
{p' : (j : ι') → X' j ⟶ X (α j)}
(w : ∀ (j : ι'), CategoryStruct.comp (p' j) (f (α j)) = f' j)
(hf' : Sieve.ofArrows X' f' ∈ J S)
:
(pullFunctor F ⋯).Full