Descent data #
In this file, given a pseudofunctor F from LocallyDiscrete Cᵒᵖ to Cat,
and a family of maps f i : X i ⟶ S in the category C,
we define the category F.DescentData f of objects over the X i
equipped with a descent data relative to the morphisms f i : X i ⟶ S.
TODO (@joelriou, @chrisflav) #
- Relate the prestack condition to the fully faithfullness of
Pseudofunctor.toDescentData. - Define stacks.
- Introduce multiple variants of
DescentData(whenChas pullbacks, whenFalso has a covariant functoriality, etc.).
Given a pseudofunctor F from LocallyDiscrete Cᵒᵖ to Cat, and a family of
morphisms f i : X i ⟶ S, the objects of the category of descent data for
the X i relative to the morphisms f i consist of families of
objects obj i in F.obj (.mk (op (X i))) together with morphisms hom
between the pullbacks of obj i₁ and obj i₂ over any object Y which maps
to both X i₁ and X i₂ (in a way that is compatible with the morphisms to S).
The compatibilities these morphisms satisfy imply that the morphisms hom are isomorphisms.
- obj (i : ι) : ↑(F.obj { as := Opposite.op (X i) })
The objects over
X ifor alli - hom ⦃Y : C⦄ (q : Y ⟶ S) ⦃i₁ i₂ : ι⦄ (f₁ : Y ⟶ X i₁) (f₂ : Y ⟶ X i₂) (_hf₁ : CategoryStruct.comp f₁ (f i₁) = q := by cat_disch) (_hf₂ : CategoryStruct.comp f₂ (f i₂) = q := by cat_disch) : (F.map f₁.op.toLoc).obj (self.obj i₁) ⟶ (F.map f₂.op.toLoc).obj (self.obj i₂)
The compatibility morphisms after pullbacks. It follows from the conditions
hom_selfandhom_compthat these are isomorphisms, seeCategoryTheory.Pseudofunctor.DescentData.isobelow. - pullHom_hom ⦃Y' Y : C⦄ (g : Y' ⟶ Y) (q : Y ⟶ S) (q' : Y' ⟶ S) (hq : CategoryStruct.comp g q = q') ⦃i₁ i₂ : ι⦄ (f₁ : Y ⟶ X i₁) (f₂ : Y ⟶ X i₂) (hf₁ : CategoryStruct.comp f₁ (f i₁) = q) (hf₂ : CategoryStruct.comp f₂ (f i₂) = q) (gf₁ : Y' ⟶ X i₁) (gf₂ : Y' ⟶ X i₂) (hgf₁ : CategoryStruct.comp g f₁ = gf₁) (hgf₂ : CategoryStruct.comp g f₂ = gf₂) : LocallyDiscreteOpToCat.pullHom (self.hom q f₁ f₂ ⋯ ⋯) g gf₁ gf₂ ⋯ ⋯ = self.hom q' gf₁ gf₂ ⋯ ⋯
- hom_comp ⦃Y : C⦄ (q : Y ⟶ S) ⦃i₁ i₂ i₃ : ι⦄ (f₁ : Y ⟶ X i₁) (f₂ : Y ⟶ X i₂) (f₃ : Y ⟶ X i₃) (hf₁ : CategoryStruct.comp f₁ (f i₁) = q) (hf₂ : CategoryStruct.comp f₂ (f i₂) = q) (hf₃ : CategoryStruct.comp f₃ (f i₃) = q) : CategoryStruct.comp (self.hom q f₁ f₂ hf₁ hf₂) (self.hom q f₂ f₃ hf₂ hf₃) = self.hom q f₁ f₃ hf₁ hf₃
Instances For
The morphisms DescentData.hom, as isomorphisms.
Equations
Instances For
The type of morphisms in the category Pseudofunctor.DescentData.
The morphisms between the
objfields of descent data.- comm ⦃Y : C⦄ (q : Y ⟶ S) ⦃i₁ i₂ : ι⦄ (f₁ : Y ⟶ X i₁) (f₂ : Y ⟶ X i₂) (hf₁ : CategoryStruct.comp f₁ (f i₁) = q) (hf₂ : CategoryStruct.comp f₂ (f i₂) = q) : CategoryStruct.comp ((F.map f₁.op.toLoc).map (self.hom i₁)) (D₂.hom q f₁ f₂ ⋯ ⋯) = CategoryStruct.comp (D₁.hom q f₁ f₂ ⋯ ⋯) ((F.map f₂.op.toLoc).map (self.hom i₂))
Instances For
Equations
- One or more equations did not get rendered due to their size.
Given a family of morphisms f : X i ⟶ S, and M : F.obj (.mk (op S)),
this is the object in F.DescentData f that is obtained by pulling back M
over the X i.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Constructor for isomorphisms in Pseudofunctor.DescentData.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The functor F.obj (.mk (op S)) ⥤ F.DescentData f.
Equations
- One or more equations did not get rendered due to their size.