Documentation

Mathlib.CategoryTheory.Sites.Hypercover.Homotopy

The category of 1-hypercovers up to homotopy #

In this file we define the category of 1-hypercovers up to homotopy. This is the category of 1-hypercovers, but where morphisms are considered up to existence of a homotopy (TODO, Christian).

Main definitions #

structure CategoryTheory.PreOneHypercover.Homotopy {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} (f g : E.Hom F) :
Type (max (max v w) w')

A homotopy of refinements E ⟶ F is a family of morphisms Xᵢ ⟶ Yₐ where Yₐ is a component of the cover of X_{f(i)} ×[S] X_{g(i)}.

Instances For
    @[simp]
    theorem CategoryTheory.PreOneHypercover.Homotopy.wr_assoc {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} {f g : E.Hom F} (self : Homotopy f g) (i : E.I₀) {Z : C} (h : F.X (g.s₀ i) Z) :
    @[simp]
    theorem CategoryTheory.PreOneHypercover.Homotopy.wl_assoc {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} {f g : E.Hom F} (self : Homotopy f g) (i : E.I₀) {Z : C} (h : F.X (f.s₀ i) Z) :

    Homotopic refinements induce the same map on multiequalizers.

    @[reducible, inline]
    noncomputable abbrev CategoryTheory.PreOneHypercover.cylinderX {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) {i : E.I₀} (k : F.I₁ (f.s₀ i) (g.s₀ i)) :
    C

    (Implementation): The covering object of cylinder f g.

    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev CategoryTheory.PreOneHypercover.cylinderf {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) {i : E.I₀} (k : F.I₁ (f.s₀ i) (g.s₀ i)) :
      cylinderX f g k S

      (Implementation): The structure morphisms of the covering objects of cylinder f g.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Given two refinement morphisms f, g : E ⟶ F, this is a (pre-)1-hypercover W that admits a morphism h : W ⟶ E such that h ≫ f and h ≫ g are homotopic. Hence they become equal after quotienting out by homotopy. This is a 1-hypercover, if E and F are (see OneHypercover.cylinder).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.PreOneHypercover.cylinder_f {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) (p : (i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i)) :
          (cylinder f g).f p = cylinderf f g p.snd
          @[simp]
          theorem CategoryTheory.PreOneHypercover.cylinder_I₀ {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) :
          (cylinder f g).I₀ = ((i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i))
          @[simp]
          theorem CategoryTheory.PreOneHypercover.cylinder_I₁ {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) (p q : (i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i)) :
          @[simp]
          theorem CategoryTheory.PreOneHypercover.cylinder_X {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) (p : (i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i)) :
          (cylinder f g).X p = cylinderX f g p.snd
          @[simp]
          noncomputable def CategoryTheory.PreOneHypercover.cylinderHom {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) :
          (cylinder f g).Hom E

          (Implementation): The refinement morphism cylinder f g ⟶ E.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.PreOneHypercover.cylinderHom_s₁ {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) {i✝ j✝ : (cylinder f g).I₀} (k : (cylinder f g).I₁ i✝ j✝) :

            (Implementation): The homotopy of the morphisms cylinder f g ⟶ E ⟶ F.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Up to homotopy, the category of (pre-)1-hypercovers is cofiltered.

              Given two refinement morphism f, g : E ⟶ F, this is a 1-hypercover W that admits a morphism h : W ⟶ E such that h ≫ f and h ≫ g are homotopic. Hence they become equal after quotienting out by homotopy.

              Equations
              Instances For

                Up to homotopy, the category of 1-hypercovers is cofiltered.