Documentation

Mathlib.CategoryTheory.Sites.Localization

The sheaf category as a localized category #

In this file, it is shown that the category of sheaves Sheaf J A is a localization of the category Presheaf J A with respect to the class J.W of morphisms of presheaves which become isomorphisms after applying the sheafification functor.

@[reducible, inline]

The class of morphisms of presheaves which become isomorphisms after sheafification. (See GrothendieckTopology.W_iff.)

Equations
Instances For
    theorem CategoryTheory.GrothendieckTopology.W_adj_unit_app {C : Type u_1} [Category.{u_4, u_1} C] (J : GrothendieckTopology C) {A : Type u_2} [Category.{u_3, u_2} A] {G : Functor (Functor Cᵒᵖ A) (Sheaf J A)} (adj : G sheafToPresheaf J A) (P : Functor Cᵒᵖ A) :
    J.W (adj.unit.app P)
    theorem CategoryTheory.GrothendieckTopology.W_iff_isIso_map_of_adjunction {C : Type u_1} [Category.{u_4, u_1} C] (J : GrothendieckTopology C) {A : Type u_2} [Category.{u_3, u_2} A] {G : Functor (Functor Cᵒᵖ A) (Sheaf J A)} (adj : G sheafToPresheaf J A) {P₁ P₂ : Functor Cᵒᵖ A} (f : P₁ P₂) :
    J.W f IsIso (G.map f)
    theorem CategoryTheory.GrothendieckTopology.W_iff {C : Type u_1} [Category.{u_3, u_1} C] (J : GrothendieckTopology C) {A : Type u_2} [Category.{u_4, u_2} A] [HasWeakSheafify J A] {P₁ P₂ : Functor Cᵒᵖ A} (f : P₁ P₂) :
    J.W f IsIso ((presheafToSheaf J A).map f)