The sheaf category as a localized category #
In this file, it is shown that the category of sheaves Sheaf J A
is a localization
of the category Presheaf J A
with respect to the class J.W
of morphisms
of presheaves which become isomorphisms after applying the sheafification functor.
@[reducible, inline]
abbrev
CategoryTheory.GrothendieckTopology.W
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_4, u_2} A]
:
MorphismProperty (Functor Cᵒᵖ A)
The class of morphisms of presheaves which become isomorphisms after sheafification.
(See GrothendieckTopology.W_iff
.)
Equations
Instances For
theorem
CategoryTheory.GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
(A : Type u_2)
[Category.{u_4, u_2} A]
:
J.W = Localization.LeftBousfield.W fun (x : Functor Cᵒᵖ A) => x ∈ Set.range (sheafToPresheaf J A).obj
theorem
CategoryTheory.GrothendieckTopology.W_sheafToPreheaf_map_iff_isIso
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_4, u_2} A]
{F₁ F₂ : Sheaf J A}
(φ : F₁ ⟶ F₂)
:
J.W ((sheafToPresheaf J A).map φ) ↔ IsIso φ
theorem
CategoryTheory.GrothendieckTopology.W_adj_unit_app
{C : Type u_1}
[Category.{u_4, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_3, u_2} A]
{G : Functor (Functor Cᵒᵖ A) (Sheaf J A)}
(adj : G ⊣ sheafToPresheaf J A)
(P : Functor Cᵒᵖ A)
:
J.W (adj.unit.app P)
theorem
CategoryTheory.GrothendieckTopology.W_iff_isIso_map_of_adjunction
{C : Type u_1}
[Category.{u_4, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_3, u_2} A]
{G : Functor (Functor Cᵒᵖ A) (Sheaf J A)}
(adj : G ⊣ sheafToPresheaf J A)
{P₁ P₂ : Functor Cᵒᵖ A}
(f : P₁ ⟶ P₂)
:
theorem
CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction
{C : Type u_1}
[Category.{u_4, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_3, u_2} A]
{G : Functor (Functor Cᵒᵖ A) (Sheaf J A)}
(adj : G ⊣ sheafToPresheaf J A)
:
J.W = (MorphismProperty.isomorphisms (Sheaf J A)).inverseImage G
theorem
CategoryTheory.GrothendieckTopology.W_toSheafify
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_4, u_2} A]
[HasWeakSheafify J A]
(P : Functor Cᵒᵖ A)
:
J.W (toSheafify J P)
theorem
CategoryTheory.GrothendieckTopology.W_iff
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_4, u_2} A]
[HasWeakSheafify J A]
{P₁ P₂ : Functor Cᵒᵖ A}
(f : P₁ ⟶ P₂)
:
J.W f ↔ IsIso ((presheafToSheaf J A).map f)
theorem
CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
(A : Type u_2)
[Category.{u_4, u_2} A]
[HasWeakSheafify J A]
:
J.W = (MorphismProperty.isomorphisms (Sheaf J A)).inverseImage (presheafToSheaf J A)
instance
CategoryTheory.GrothendieckTopology.instIsLocalizationFunctorOppositeSheafPresheafToSheafW
{C : Type u_1}
[Category.{u_3, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{u_4, u_2} A]
[HasWeakSheafify J A]
:
(presheafToSheaf J A).IsLocalization J.W