Documentation

Mathlib.CategoryTheory.Sites.Point.Category

The category of points of a site #

We define the category structure on the points of a site (C, J): a morphism between Φ₁ ⟶ Φ₂ between two points consists of a morphism Φ₂.fiber ⟶ Φ₁.fiber (SGA 4 IV 3.2).

References #

structure CategoryTheory.GrothendieckTopology.Point.Hom {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} (Φ₁ Φ₂ : J.Point) :
Type (max u w)

A morphism between points of a site consists of a morphism between the functors Point.fiber, in the opposite direction.

  • hom : Φ₂.fiber Φ₁.fiber

    a natural transformation, in the opposite direction

Instances For
    theorem CategoryTheory.GrothendieckTopology.Point.Hom.ext_iff {C : Type u} {inst✝ : Category.{v, u} C} {J : GrothendieckTopology C} {Φ₁ Φ₂ : J.Point} {x y : Φ₁.Hom Φ₂} :
    x = y x.hom = y.hom
    theorem CategoryTheory.GrothendieckTopology.Point.Hom.ext {C : Type u} {inst✝ : Category.{v, u} C} {J : GrothendieckTopology C} {Φ₁ Φ₂ : J.Point} {x y : Φ₁.Hom Φ₂} (hom : x.hom = y.hom) :
    x = y
    Equations
    • One or more equations did not get rendered due to their size.
    theorem CategoryTheory.GrothendieckTopology.Point.hom_ext {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {Φ₁ Φ₂ : J.Point} {f g : Φ₁ Φ₂} (h : f.hom = g.hom) :
    f = g
    theorem CategoryTheory.GrothendieckTopology.Point.hom_ext_iff {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {Φ₁ Φ₂ : J.Point} {f g : Φ₁ Φ₂} :
    f = g f.hom = g.hom
    @[simp]
    theorem CategoryTheory.GrothendieckTopology.Point.comp_hom {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {Φ₁ Φ₂ Φ₃ : J.Point} (f : Φ₁ Φ₂) (g : Φ₂ Φ₃) :
    theorem CategoryTheory.GrothendieckTopology.Point.comp_hom_assoc {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {Φ₁ Φ₂ Φ₃ : J.Point} (f : Φ₁ Φ₂) (g : Φ₂ Φ₃) {Z : Functor C (Type w)} (h : Φ₁.fiber Z) :

    The natural transformation on fibers of presheaves that is induced by a morphism of points of a site.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_app {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] [Limits.HasColimitsOfSize.{w, w, v', u'} A] {Φ₁ Φ₂ : J.Point} (f : Φ₁ Φ₂) (P : Functor Cᵒᵖ A) :
      (presheafFiber f).app P = Φ₂.presheafFiberDesc (fun (X : C) (x : Φ₂.fiber.obj X) => Φ₁.toPresheafFiber X (f.hom.app X x) P)
      @[reducible, inline]

      The natural transformation on fibers of sheaves that is induced by a morphism of points of a site.

      Equations
      Instances For