The category of points of a site #
We define the category structure on the points of a site (C, J):
a morphism between Φ₁ ⟶ Φ₂ between two points consists of a
morphism Φ₂.fiber ⟶ Φ₁.fiber (SGA 4 IV 3.2).
References #
structure
CategoryTheory.GrothendieckTopology.Point.Hom
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
(Φ₁ Φ₂ : J.Point)
:
Type (max u w)
A morphism between points of a site consists of a morphism
between the functors Point.fiber, in the opposite direction.
a natural transformation, in the opposite direction
Instances For
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.ext_iff
{C : Type u}
{inst✝ : Category.{v, u} C}
{J : GrothendieckTopology C}
{Φ₁ Φ₂ : J.Point}
{x y : Φ₁.Hom Φ₂}
:
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.ext
{C : Type u}
{inst✝ : Category.{v, u} C}
{J : GrothendieckTopology C}
{Φ₁ Φ₂ : J.Point}
{x y : Φ₁.Hom Φ₂}
(hom : x.hom = y.hom)
:
instance
CategoryTheory.GrothendieckTopology.Point.instCategory
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
:
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.GrothendieckTopology.Point.hom_ext
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{Φ₁ Φ₂ : J.Point}
{f g : Φ₁ ⟶ Φ₂}
(h : f.hom = g.hom)
:
theorem
CategoryTheory.GrothendieckTopology.Point.hom_ext_iff
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{Φ₁ Φ₂ : J.Point}
{f g : Φ₁ ⟶ Φ₂}
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.id_hom
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
(Φ : J.Point)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.comp_hom
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{Φ₁ Φ₂ Φ₃ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(g : Φ₂ ⟶ Φ₃)
:
theorem
CategoryTheory.GrothendieckTopology.Point.comp_hom_assoc
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{Φ₁ Φ₂ Φ₃ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(g : Φ₂ ⟶ Φ₃)
{Z : Functor C (Type w)}
(h : Φ₁.fiber ⟶ Z)
:
CategoryStruct.comp (CategoryStruct.comp f g).hom h = CategoryStruct.comp g.hom (CategoryStruct.comp f.hom h)
noncomputable def
CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ : J.Point}
(f : Φ₁ ⟶ Φ₂)
:
The natural transformation on fibers of presheaves that is induced by a morphism of points of a site.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_app
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(P : Functor Cᵒᵖ A)
:
(presheafFiber f).app P = Φ₂.presheafFiberDesc (fun (X : C) (x : Φ₂.fiber.obj X) => Φ₁.toPresheafFiber X (f.hom.app X x) P) ⋯
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_id
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
(Φ : J.Point)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_comp
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ Φ₃ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(g : Φ₂ ⟶ Φ₃)
:
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.presheafFiber_comp_assoc
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ Φ₃ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(g : Φ₂ ⟶ Φ₃)
{Z : Functor (Functor Cᵒᵖ A) A}
(h : Φ₁.presheafFiber ⟶ Z)
:
CategoryStruct.comp (presheafFiber (CategoryStruct.comp f g)) h = CategoryStruct.comp (presheafFiber g) (CategoryStruct.comp (presheafFiber f) h)
@[reducible, inline]
noncomputable abbrev
CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ : J.Point}
(f : Φ₁ ⟶ Φ₂)
:
The natural transformation on fibers of sheaves that is induced by a morphism of points of a site.
Equations
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber_id
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
(Φ : J.Point)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber_comp
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ Φ₃ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(g : Φ₂ ⟶ Φ₃)
:
theorem
CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber_comp_assoc
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
{A : Type u'}
[Category.{v', u'} A]
[Limits.HasColimitsOfSize.{w, w, v', u'} A]
{Φ₁ Φ₂ Φ₃ : J.Point}
(f : Φ₁ ⟶ Φ₂)
(g : Φ₂ ⟶ Φ₃)
{Z : Functor (Sheaf J A) A}
(h : Φ₁.sheafFiber ⟶ Z)
:
CategoryStruct.comp (sheafFiber (CategoryStruct.comp f g)) h = CategoryStruct.comp (sheafFiber g) (CategoryStruct.comp (sheafFiber f) h)