Documentation

Mathlib.CategoryTheory.SmallObject.Iteration.FunctorOfCocone

The functor from Set.Iic j deduced from a cocone #

Given a functor F : Set.Iio j ⥤ C and c : Cocone F, we define an extension of F as a functor Set.Iic j ⥤ C for which the top element is mapped to c.pt.

def CategoryTheory.Functor.ofCocone.obj {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) :
C

Auxiliary definition for Functor.ofCocone.

Equations
Instances For
    def CategoryTheory.Functor.ofCocone.objIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
    obj c i F.obj i, hi

    Auxiliary definition for Functor.ofCocone.

    Equations
    Instances For
      def CategoryTheory.Functor.ofCocone.objIsoPt {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
      obj c j c.pt

      Auxiliary definition for Functor.ofCocone.

      Equations
      Instances For
        def CategoryTheory.Functor.ofCocone.map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) :
        obj c i₁ obj c i₂

        Auxiliary definition for Functor.ofCocone.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Functor.ofCocone.map_id {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i j) :
          map c i i hi = CategoryStruct.id (obj c i)
          theorem CategoryTheory.Functor.ofCocone.map_comp {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ i₃ : J) (hi : i₁ i₂) (hi' : i₂ i₃) (hi₃ : i₃ j) :
          map c i₁ i₃ hi₃ = CategoryStruct.comp (map c i₁ i₂ hi ) (map c i₂ i₃ hi' hi₃)
          def CategoryTheory.Functor.ofCocone {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
          Functor (↑(Set.Iic j)) C

          Given a functor F : Set.Iio j ⥤ C and a cocone c : Cocone F, where j : J and J is linearly ordered, this is the functor Set.Iic j ⥤ C which extends F and sends the top element to c.pt.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def CategoryTheory.Functor.ofCoconeObjIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
            (ofCocone c).obj i, F.obj i, hi

            The isomorphism (ofCocone c).obj ⟨i, _⟩ ≅ F.obj ⟨i, _⟩ when i < j.

            Equations
            Instances For
              def CategoryTheory.Functor.ofCoconeObjIsoPt {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
              (ofCocone c).obj j, c.pt

              The isomorphism (ofCocone c).obj ⟨j, _⟩ ≅ c.pt.

              Equations
              Instances For
                theorem CategoryTheory.Functor.ofCocone_map_to_top {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
                (ofCocone c).map (homOfLE ) = CategoryStruct.comp (ofCoconeObjIso c i hi).hom (CategoryStruct.comp (c.app i, hi) (ofCoconeObjIsoPt c).inv)
                theorem CategoryTheory.Functor.ofCocone_map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) :
                (ofCocone c).map (homOfLE hi) = CategoryStruct.comp (ofCoconeObjIso c i₁ ).hom (CategoryStruct.comp (F.map (homOfLE hi)) (ofCoconeObjIso c i₂ hi₂).inv)
                theorem CategoryTheory.Functor.ofCocone_map_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) {Z : C} (h : (ofCocone c).obj i₂, Z) :
                theorem CategoryTheory.Functor.ofCoconeObjIso_hom_naturality {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) :
                CategoryStruct.comp ((ofCocone c).map (homOfLE hi)) (ofCoconeObjIso c i₂ hi₂).hom = CategoryStruct.comp (ofCoconeObjIso c i₁ ).hom (F.map (homOfLE hi))
                theorem CategoryTheory.Functor.ofCoconeObjIso_hom_naturality_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) {Z : C} (h : F.obj i₂, hi₂ Z) :

                The isomorphism expressing that ofCocone c extends the functor F when c : Cocone F.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Functor.restrictionLTOfCoconeIso_hom_app {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (X : (Set.Iio j)) :
                  (restrictionLTOfCoconeIso c).hom.app X = (ofCoconeObjIso c X ).hom
                  @[simp]
                  theorem CategoryTheory.Functor.restrictionLTOfCoconeIso_inv_app {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (X : (Set.Iio j)) :
                  (restrictionLTOfCoconeIso c).inv.app X = (ofCoconeObjIso c X ).inv

                  If c is a colimit cocone, then so is coconeOfLE (ofCocone c) (Preorder.le_refl j).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For