Documentation

Mathlib.CategoryTheory.SmallObject.Iteration.FunctorOfCocone

The functor from Set.Iic j deduced from a cocone #

Given a functor F : Set.Iio j ⥤ C and c : Cocone F, we define an extension of F as a functor Set.Iic j ⥤ C for which the top element is mapped to c.pt.

def CategoryTheory.SmallObject.SuccStruct.ofCocone.obj {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) :
C

Auxiliary definition for ofCocone.

Equations
Instances For
    def CategoryTheory.SmallObject.SuccStruct.ofCocone.objIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
    obj c i F.obj i, hi

    Auxiliary definition for ofCocone.

    Equations
    Instances For
      def CategoryTheory.SmallObject.SuccStruct.ofCocone.map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) :
      obj c i₁ obj c i₂

      Auxiliary definition for ofCocone.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.SmallObject.SuccStruct.ofCocone.map_id {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i j) :
        map c i i hi = CategoryStruct.id (obj c i)
        theorem CategoryTheory.SmallObject.SuccStruct.ofCocone.map_comp {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ i₃ : J) (hi : i₁ i₂) (hi' : i₂ i₃) (hi₃ : i₃ j) :
        map c i₁ i₃ hi₃ = CategoryStruct.comp (map c i₁ i₂ hi ) (map c i₂ i₃ hi' hi₃)
        def CategoryTheory.SmallObject.SuccStruct.ofCocone {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
        Functor (↑(Set.Iic j)) C

        Given a functor F : Set.Iio j ⥤ C and a cocone c : Cocone F, where j : J and J is linearly ordered, this is the functor Set.Iic j ⥤ C which extends F and sends the top element to c.pt.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_obj_eq {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
          (ofCocone c).obj i, = F.obj i, hi
          def CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
          (ofCocone c).obj i, F.obj i, hi

          The isomorphism (ofCocone c).obj ⟨i, _⟩ ≅ F.obj ⟨i, _⟩ when i < j.

          Equations
          Instances For
            theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_obj_eq_pt {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
            (ofCocone c).obj j, = c.pt
            def CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIsoPt {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
            (ofCocone c).obj j, c.pt

            The isomorphism (ofCocone c).obj ⟨j, _⟩ ≅ c.pt.

            Equations
            Instances For
              theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) :
              theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_map_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) {Z : C} (h : (ofCocone c).obj i₂, Z) :
              theorem CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso_hom_naturality {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) :
              theorem CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso_hom_naturality_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) {Z : C} (h : F.obj i₂, hi₂ Z) :

              The isomorphism expressing that ofCocone c extends the functor F when c : Cocone F.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                If c is a colimit cocone, then so is coconeOfLE (ofCocone c) (Preorder.le_refl j).

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (h₁₂ : i₁ i₂) (h₂ : i₂ < j) :
                  arrowMap (ofCocone c) i₁ i₂ h₁₂ = Arrow.mk (F.map (homOfLE h₁₂))
                  theorem CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone_to_top {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
                  arrowMap (ofCocone c) i j = Arrow.mk (c.ι.app i, hi)