The functor from Set.Iic j
deduced from a cocone #
Given a functor F : Set.Iio j ⥤ C
and c : Cocone F
, we define
an extension of F
as a functor Set.Iic j ⥤ C
for which
the top element is mapped to c.pt
.
def
CategoryTheory.SmallObject.SuccStruct.ofCocone.obj
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
:
C
Auxiliary definition for ofCocone
.
Equations
- CategoryTheory.SmallObject.SuccStruct.ofCocone.obj c i = if hi : i < j then F.obj ⟨i, hi⟩ else c.pt
Instances For
def
CategoryTheory.SmallObject.SuccStruct.ofCocone.objIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
(hi : i < j)
:
Auxiliary definition for ofCocone
.
Equations
Instances For
def
CategoryTheory.SmallObject.SuccStruct.ofCocone.objIsoPt
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
:
Auxiliary definition for ofCocone
.
Instances For
def
CategoryTheory.SmallObject.SuccStruct.ofCocone.map
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ : J)
(hi : i₁ ≤ i₂)
(hi₂ : i₂ ≤ j)
:
Auxiliary definition for ofCocone
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone.map_id
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
(hi : i ≤ j)
:
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone.map_comp
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ i₃ : J)
(hi : i₁ ≤ i₂)
(hi' : i₂ ≤ i₃)
(hi₃ : i₃ ≤ j)
:
def
CategoryTheory.SmallObject.SuccStruct.ofCocone
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
:
Given a functor F : Set.Iio j ⥤ C
and a cocone c : Cocone F
,
where j : J
and J
is linearly ordered, this is the functor
Set.Iic j ⥤ C
which extends F
and sends the top element to c.pt
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone_obj_eq
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
(hi : i < j)
:
def
CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
(hi : i < j)
:
The isomorphism (ofCocone c).obj ⟨i, _⟩ ≅ F.obj ⟨i, _⟩
when i < j
.
Equations
Instances For
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone_obj_eq_pt
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
:
def
CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIsoPt
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
:
The isomorphism (ofCocone c).obj ⟨j, _⟩ ≅ c.pt
.
Equations
Instances For
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone_map_to_top
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
(hi : i < j)
:
(ofCocone c).map (homOfLE ⋯) = CategoryStruct.comp (ofCoconeObjIso c i hi).hom (CategoryStruct.comp (c.ι.app ⟨i, hi⟩) (ofCoconeObjIsoPt c).inv)
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone_map
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ : J)
(hi : i₁ ≤ i₂)
(hi₂ : i₂ < j)
:
(ofCocone c).map (homOfLE hi) = CategoryStruct.comp (ofCoconeObjIso c i₁ ⋯).hom
(CategoryStruct.comp (F.map (homOfLE hi)) (ofCoconeObjIso c i₂ hi₂).inv)
theorem
CategoryTheory.SmallObject.SuccStruct.ofCocone_map_assoc
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ : J)
(hi : i₁ ≤ i₂)
(hi₂ : i₂ < j)
{Z : C}
(h : (ofCocone c).obj ⟨i₂, ⋯⟩ ⟶ Z)
:
CategoryStruct.comp ((ofCocone c).map (homOfLE hi)) h = CategoryStruct.comp (ofCoconeObjIso c i₁ ⋯).hom
(CategoryStruct.comp (F.map (homOfLE hi)) (CategoryStruct.comp (ofCoconeObjIso c i₂ hi₂).inv h))
theorem
CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso_hom_naturality
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ : J)
(hi : i₁ ≤ i₂)
(hi₂ : i₂ < j)
:
CategoryStruct.comp ((ofCocone c).map (homOfLE hi)) (ofCoconeObjIso c i₂ hi₂).hom = CategoryStruct.comp (ofCoconeObjIso c i₁ ⋯).hom (F.map (homOfLE hi))
theorem
CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso_hom_naturality_assoc
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ : J)
(hi : i₁ ≤ i₂)
(hi₂ : i₂ < j)
{Z : C}
(h : F.obj ⟨i₂, hi₂⟩ ⟶ Z)
:
CategoryStruct.comp ((ofCocone c).map (homOfLE hi)) (CategoryStruct.comp (ofCoconeObjIso c i₂ hi₂).hom h) = CategoryStruct.comp (ofCoconeObjIso c i₁ ⋯).hom (CategoryStruct.comp (F.map (homOfLE hi)) h)
def
CategoryTheory.SmallObject.SuccStruct.restrictionLTOfCoconeIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
:
The isomorphism expressing that ofCocone c
extends the functor F
when c : Cocone F
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.SmallObject.SuccStruct.restrictionLTOfCoconeIso_inv_app
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(X : ↑(Set.Iio j))
:
@[simp]
theorem
CategoryTheory.SmallObject.SuccStruct.restrictionLTOfCoconeIso_hom_app
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(X : ↑(Set.Iio j))
:
def
CategoryTheory.SmallObject.SuccStruct.isColimitCoconeOfLEOfCocone
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
{c : Limits.Cocone F}
(hc : Limits.IsColimit c)
:
Limits.IsColimit (coconeOfLE (ofCocone c) ⋯)
If c
is a colimit cocone, then so is coconeOfLE (ofCocone c) (Preorder.le_refl j)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i₁ i₂ : J)
(h₁₂ : i₁ ≤ i₂)
(h₂ : i₂ < j)
:
theorem
CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone_to_top
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : Type u}
[LinearOrder J]
{j : J}
{F : Functor (↑(Set.Iio j)) C}
(c : Limits.Cocone F)
(i : J)
(hi : i < j)
: