Documentation

Mathlib.CategoryTheory.Subfunctor.Equalizer

The equalizer of two morphisms of functors, as a subfunctor #

If F₁ and F₂ are type-valued functors, A : Subfunctor F₁, and f and g are two morphisms A.toFunctor ⟶ F₂, we introduce Subcomplex.equalizer f g, which is the subfunctor of F₁ contained in A where f and g coincide.

def CategoryTheory.Subfunctor.equalizer {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :

The equalizer of two morphisms of type-valued functors of types of the form A.toFunctor ⟶ F₂ with A : Subfunctor F₁, as a subcomplex of F₁.

Equations
Instances For
    theorem CategoryTheory.Subfunctor.equalizer_obj {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) (U : C) :
    (Subfunctor.equalizer f g).obj U = {x : F₁.obj U | ∃ (hx : x A.obj U), f.app U x, hx = g.app U x, hx}
    theorem CategoryTheory.Subfunctor.equalizer_le {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :
    @[simp]
    theorem CategoryTheory.Subfunctor.equalizer_self {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f : A.toFunctor F₂) :
    theorem CategoryTheory.Subfunctor.mem_equalizer_iff {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) {i : C} (x : A.toFunctor.obj i) :
    x (Subfunctor.equalizer f g).obj i f.app i x = g.app i x
    theorem CategoryTheory.Subfunctor.equalizer_eq_iff {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :

    Given two morphisms f and g in A.toFunctor ⟶ F₂, this is the monomorphism of functors corresponding to the inclusion Subfunctor.equalizer f g ≤ A.

    Equations
    Instances For
      @[simp]

      Given two morphisms f and g in A.toFunctor ⟶ F₂, if φ : G ⟶ A.toFunctor is such that φ ≫ f = φ ≫ g, then this is the lifted morphism G ⟶ (Subfunctor.equalizer f g).toFunctor. This is part of the universal property of the equalizer that is satisfied by the functor (Subfunctor.equalizer f g).toFunctor.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Subfunctor.equalizer.lift_ι {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) {G : Functor C (Type w)} (φ : G A.toFunctor) (w : CategoryStruct.comp φ f = CategoryStruct.comp φ g) :
        CategoryStruct.comp (lift f g φ w) (ι f g) = φ
        @[simp]
        theorem CategoryTheory.Subfunctor.equalizer.lift_ι_assoc {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) {G : Functor C (Type w)} (φ : G A.toFunctor) (w : CategoryStruct.comp φ f = CategoryStruct.comp φ g) {Z : Functor C (Type w)} (h : A.toFunctor Z) :
        def CategoryTheory.Subfunctor.equalizer.fork {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :

        The (limit) fork which expresses (Subfunctor.equalizer f g).toFunctor as the equalizer of f and g.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Subfunctor.equalizer.fork_pt {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :
          @[simp]
          theorem CategoryTheory.Subfunctor.equalizer.fork_ι {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :
          (fork f g).ι = ι f g

          (Subfunctor.equalizer f g).toFunctor is the equalizer of f and g.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[deprecated CategoryTheory.Subfunctor.equalizer (since := "2025-12-11")]
            def CategoryTheory.Subfunctor.Subpresheaf.equalizer {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) :

            Alias of CategoryTheory.Subfunctor.equalizer.


            The equalizer of two morphisms of type-valued functors of types of the form A.toFunctor ⟶ F₂ with A : Subfunctor F₁, as a subcomplex of F₁.

            Equations
            Instances For
              @[deprecated CategoryTheory.Subfunctor.equalizer_le (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.equalizer_le.

              @[deprecated CategoryTheory.Subfunctor.equalizer_self (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.equalizer_self.

              @[deprecated CategoryTheory.Subfunctor.mem_equalizer_iff (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.mem_equalizer_iff {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} {A : Subfunctor F₁} (f g : A.toFunctor F₂) {i : C} (x : A.toFunctor.obj i) :
              x (Subfunctor.equalizer f g).obj i f.app i x = g.app i x

              Alias of CategoryTheory.Subfunctor.mem_equalizer_iff.

              @[deprecated CategoryTheory.Subfunctor.range_le_equalizer_iff (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.range_le_equalizer_iff.

              @[deprecated CategoryTheory.Subfunctor.equalizer_eq_iff (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.equalizer_eq_iff.

              @[deprecated CategoryTheory.Subfunctor.equalizer.ι (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.equalizer.ι.


              Given two morphisms f and g in A.toFunctor ⟶ F₂, this is the monomorphism of functors corresponding to the inclusion Subfunctor.equalizer f g ≤ A.

              Equations
              Instances For
                @[deprecated CategoryTheory.Subfunctor.equalizer.ι_ι (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.equalizer.ι_ι.

                @[deprecated CategoryTheory.Subfunctor.equalizer.condition (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.equalizer.condition.

                @[deprecated CategoryTheory.Subfunctor.equalizer.lift (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.equalizer.lift.


                Given two morphisms f and g in A.toFunctor ⟶ F₂, if φ : G ⟶ A.toFunctor is such that φ ≫ f = φ ≫ g, then this is the lifted morphism G ⟶ (Subfunctor.equalizer f g).toFunctor. This is part of the universal property of the equalizer that is satisfied by the functor (Subfunctor.equalizer f g).toFunctor.

                Equations
                Instances For
                  @[deprecated CategoryTheory.Subfunctor.equalizer.lift_ι' (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.equalizer.lift_ι'.

                  @[deprecated CategoryTheory.Subfunctor.equalizer.lift_ι (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.equalizer.lift_ι.

                  @[deprecated CategoryTheory.Subfunctor.equalizer.fork (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.equalizer.fork.


                  The (limit) fork which expresses (Subfunctor.equalizer f g).toFunctor as the equalizer of f and g.

                  Equations
                  Instances For
                    @[deprecated CategoryTheory.Subfunctor.equalizer.fork_ι (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.equalizer.fork_ι.

                    @[deprecated CategoryTheory.Subfunctor.equalizer.forkIsLimit (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.equalizer.forkIsLimit.


                    (Subfunctor.equalizer f g).toFunctor is the equalizer of f and g.

                    Equations
                    Instances For