The subpresheaf generated by a section #
Given a presheaf of types F : Cᵒᵖ ⥤ Type w and a section x : F.obj X,
we define Subfunctor.ofSection x : Subfunctor F as the subpresheaf
of F generated by x.
def
CategoryTheory.Subfunctor.ofSection
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
{X : Cᵒᵖ}
(x : F.obj X)
:
The subpresheaf of F : Cᵒᵖ ⥤ Type w that is generated
by a section x : F.obj X.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Subfunctor.ofSection_le_iff
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
{X : Cᵒᵖ}
(x : F.obj X)
(G : Subfunctor F)
:
theorem
CategoryTheory.Subfunctor.ofSection_eq_range
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type v)}
{X : Cᵒᵖ}
(x : F.obj X)
:
theorem
CategoryTheory.Subfunctor.range_eq_ofSection
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type v)}
{X : C}
(f : yoneda.obj X ⟶ F)
:
theorem
CategoryTheory.Subfunctor.ofSection_eq_range'
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type (max v w))}
{X : Cᵒᵖ}
(x : F.obj X)
:
theorem
CategoryTheory.Subfunctor.range_eq_ofSection'
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type (max v w))}
{X : C}
(f : (yoneda.obj X).comp uliftFunctor.{w, v} ⟶ F)
:
@[deprecated CategoryTheory.Subfunctor.ofSection (since := "2025-12-11")]
def
CategoryTheory.Subfunctor.Subpresheaf.ofSection
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
{X : Cᵒᵖ}
(x : F.obj X)
:
Alias of CategoryTheory.Subfunctor.ofSection.
The subpresheaf of F : Cᵒᵖ ⥤ Type w that is generated
by a section x : F.obj X.
Instances For
@[deprecated CategoryTheory.Subfunctor.mem_ofSection_obj (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.mem_ofSection_obj
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
{X : Cᵒᵖ}
(x : F.obj X)
:
@[deprecated CategoryTheory.Subfunctor.ofSection_le_iff (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.ofSection_le_iff
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type w)}
{X : Cᵒᵖ}
(x : F.obj X)
(G : Subfunctor F)
:
@[deprecated CategoryTheory.Subfunctor.ofSection_eq_range (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type v)}
{X : Cᵒᵖ}
(x : F.obj X)
:
@[deprecated CategoryTheory.Subfunctor.range_eq_ofSection (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type v)}
{X : C}
(f : yoneda.obj X ⟶ F)
:
@[deprecated CategoryTheory.Subfunctor.ofSection_eq_range' (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range'
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type (max v w))}
{X : Cᵒᵖ}
(x : F.obj X)
:
@[deprecated CategoryTheory.Subfunctor.range_eq_ofSection' (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection'
{C : Type u}
[Category.{v, u} C]
{F : Functor Cᵒᵖ (Type (max v w))}
{X : C}
(f : (yoneda.obj X).comp uliftFunctor.{w, v} ⟶ F)
: