Documentation

Mathlib.CategoryTheory.Triangulated.TStructure.TruncLTGE

Truncations for a t-structure #

Let t be a t-structure on a (pre)triangulated category C. In this file, for any n : ℤ, we construct truncation functors t.truncLT n : C ⥤ C, t.truncGE n : C ⥤ C and natural transformations t.truncLTι n : t.truncLT n ⟶ 𝟭 C, t.truncGEπ n : 𝟭 C ⟶ t.truncGE n and t.truncGEδLT n : t.truncGE n ⟶ t.truncLT n ⋙ shiftFunctor C (1 : ℤ) which are part of a distinguished triangle (t.truncLT n).obj X ⟶ X ⟶ (t.truncGE n).obj X ⟶ ((t.truncLT n).obj X)⟦1⟧ for any X : C, with (t.truncLT n).obj X < n and (t.truncGE n).obj X ≥ n.

theorem CategoryTheory.Triangulated.TStructure.triangle_map_ext {C : Type u} [Category.{v, u} C] [Preadditive C] [Limits.HasZeroObject C] [HasShift C ] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (t : TStructure C) {T T' : Pretriangulated.Triangle C} {f₁ f₂ : T T'} (hT : T Pretriangulated.distinguishedTriangles) (hT' : T' Pretriangulated.distinguishedTriangles) (a b : ) (h₀ : t.IsLE T.obj₁ a) (h₁ : t.IsGE T'.obj₃ b) (H : f₁.hom₂ = f₂.hom₂ := by cat_disch) (hab : a b := by cutsat) :
f₁ = f₂

Two morphisms T ⟶ T' between distinguished triangles must coincide when they coincide on the middle object, and there are integers a ≤ b such that for a t-structure, we have T.obj₁ ≤ a and T'.obj₃ ≥ b.

theorem CategoryTheory.Triangulated.TStructure.triangle_map_exists {C : Type u} [Category.{v, u} C] [Preadditive C] [Limits.HasZeroObject C] [HasShift C ] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (t : TStructure C) {T T' : Pretriangulated.Triangle C} (hT : T Pretriangulated.distinguishedTriangles) (hT' : T' Pretriangulated.distinguishedTriangles) (φ : T.obj₂ T'.obj₂) (a b : ) (h₀ : t.IsLE T.obj₁ a) (h₁' : t.IsGE T'.obj₃ b) (h : a < b := by cutsat) :
∃ (f : T T'), f.hom₂ = φ

If a < b, then a morphism T.obj₂ ⟶ T'.obj₂ extends to a morphism T ⟶ T' of distinguished triangles when for a t-structure T.obj₁ ≤ a and T'.obj₃ ≥ b.

theorem CategoryTheory.Triangulated.TStructure.triangle_iso_exists {C : Type u} [Category.{v, u} C] [Preadditive C] [Limits.HasZeroObject C] [HasShift C ] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (t : TStructure C) {T T' : Pretriangulated.Triangle C} (hT : T Pretriangulated.distinguishedTriangles) (hT' : T' Pretriangulated.distinguishedTriangles) (e : T.obj₂ T'.obj₂) (a b : ) (h₀ : t.IsLE T.obj₁ a) (h₁ : t.IsGE T.obj₃ b) (h₀' : t.IsLE T'.obj₁ a) (h₁' : t.IsGE T'.obj₃ b) (h : a < b := by cutsat) :
∃ (e' : T T'), e'.hom.hom₂ = e.hom

If a < b, then an isomorphism T.obj₂ ≅ T'.obj₂ extends to an isomorphism T ≅ T' of distinguished triangles when for a t-structure, both T.obj₁ and T'.obj₁ are ≤ a and both T.obj₃ and T'.obj₃ are ≥ b.

The private definitions in the namespace TStructure.TruncAux are part of the implementation of the truncation functors truncLT, truncGE and the distinguished triangles they fit in.

Given a t-structure t on a pretriangulated category C and n : ℤ, this is the < n-truncation functor. See also the natural transformation truncLTι.

Equations
Instances For

    The natural transformation t.truncLT n ⟶ 𝟭 C when t is a t-structure on a category C and n : ℤ.

    Equations
    Instances For

      Given a t-structure t on a pretriangulated category C and n : ℤ, this is the ≥ n-truncation functor. See also the natural transformation truncGEπ.

      Equations
      Instances For

        The natural transformation 𝟭 C ⟶ t.truncGE n when t is a t-structure on a category C and n : ℤ.

        Equations
        Instances For

          The connecting morphism t.truncGE n ⟶ t.truncLT n ⋙ shiftFunctor C (1 : ℤ) when t is a t-structure on a pretriangulated category and n : ℤ.

          Equations
          Instances For

            The distinguished triangle (t.truncLT n).obj A ⟶ A ⟶ (t.truncGE n).obj A ⟶ ... as a functor C ⥤ Triangle C when t is a t-structure on a pretriangulated category C and n : ℤ.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Triangulated.TStructure.triangleLTGE_map_hom₂ {C : Type u} [Category.{v, u} C] [Preadditive C] [Limits.HasZeroObject C] [HasShift C ] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (t : TStructure C) (n : ) {X✝ Y✝ : C} (φ : X✝ Y✝) :
              ((t.triangleLTGE n).map φ).hom₂ = φ
              @[simp]
              theorem CategoryTheory.Triangulated.TStructure.triangleLTGE_map_hom₁ {C : Type u} [Category.{v, u} C] [Preadditive C] [Limits.HasZeroObject C] [HasShift C ] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (t : TStructure C) (n : ) {X✝ Y✝ : C} (φ : X✝ Y✝) :
              ((t.triangleLTGE n).map φ).hom₁ = (t.truncLT n).map φ
              @[simp]
              theorem CategoryTheory.Triangulated.TStructure.triangleLTGE_map_hom₃ {C : Type u} [Category.{v, u} C] [Preadditive C] [Limits.HasZeroObject C] [HasShift C ] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (t : TStructure C) (n : ) {X✝ Y✝ : C} (φ : X✝ Y✝) :
              ((t.triangleLTGE n).map φ).hom₃ = (t.truncGE n).map φ