The Yoneda functors are homological #
Let C
be a pretriangulated category. In this file, we show that the
functors preadditiveCoyoneda.obj A : C ⥤ AddCommGrp
for A : Cᵒᵖ
and
preadditiveYoneda.obj B : Cᵒᵖ ⥤ AddCommGrp
for B : C
are homological functors.
instance
CategoryTheory.Pretriangulated.instIsHomologicalAddCommGrpObjOppositeFunctorPreadditiveCoyoneda
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
[Limits.HasZeroObject C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
(A : Cᵒᵖ)
:
(preadditiveCoyoneda.obj A).IsHomological
instance
CategoryTheory.Pretriangulated.instIsHomologicalOppositeAddCommGrpObjFunctorPreadditiveYoneda
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
[Limits.HasZeroObject C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
(B : C)
:
(preadditiveYoneda.obj B).IsHomological
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
[Limits.HasZeroObject C]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
[Pretriangulated C]
(T : Triangle C)
(hT : T ∈ distinguishedTriangles)
(B : C)
:
((shortComplexOfDistTriangle T hT).op.map (preadditiveYoneda.obj B)).Exact
noncomputable instance
CategoryTheory.Pretriangulated.instShiftSequenceAddCommGrpObjOppositeFunctorPreadditiveCoyonedaInt
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
(A : Cᵒᵖ)
:
(preadditiveCoyoneda.obj A).ShiftSequence ℤ
theorem
CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
(T : Triangle C)
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
{A : Cᵒᵖ}
(x : Opposite.unop A ⟶ (shiftFunctor C n₀).obj T.obj₃)
:
((preadditiveCoyoneda.obj A).homologySequenceδ T n₀ n₁ h) x = CategoryStruct.comp x
(CategoryStruct.comp ((shiftFunctor C n₀).map T.mor₃) ((shiftFunctorAdd' C 1 n₀ n₁ ⋯).inv.app T.obj₁))
noncomputable instance
CategoryTheory.Pretriangulated.instShiftSequenceOppositeAddCommGrpObjFunctorPreadditiveYonedaInt
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
(B : C)
:
(preadditiveYoneda.obj B).ShiftSequence ℤ
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
(B : C)
{X Y : Cᵒᵖ}
(n : ℤ)
(f : X ⟶ (shiftFunctor Cᵒᵖ n).obj Y)
(a a' : ℤ)
(h : n + a = a')
(z : Opposite.unop X ⟶ (shiftFunctor C a).obj B)
:
((preadditiveYoneda.obj B).shiftMap f a a' h) z = ((ShiftedHom.opEquiv n).symm f).comp z ⋯
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
[HasShift C ℤ]
[∀ (n : ℤ), (shiftFunctor C n).Additive]
(T : Triangle C)
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
{B : C}
(x : T.obj₁ ⟶ (shiftFunctor C n₀).obj B)
:
((preadditiveYoneda.obj B).homologySequenceδ ((triangleOpEquivalence C).functor.obj (Opposite.op T)) n₀ n₁ h) x = CategoryStruct.comp T.mor₃ (CategoryStruct.comp ((shiftFunctor C 1).map x) ((shiftFunctorAdd' C n₀ 1 n₁ h).inv.app B))