Documentation

Mathlib.Combinatorics.Enumerative.DoubleCounting

Double countings #

This file gathers a few double counting arguments.

Bipartite graphs #

In a bipartite graph (considered as a relation r : α → β → Prop), we can bound the number of edges between s : Finset α and t : Finset β by the minimum/maximum of edges over all a ∈ s times the size of s. Similarly for t. Combining those two yields inequalities between the sizes of s and t.

Bipartite graph #

def Finset.bipartiteBelow {α : Type u_2} {β : Type u_3} (r : αβProp) (s : Finset α) (b : β) [(a : α) → Decidable (r a b)] :

Elements of s which are "below" b according to relation r.

Equations
Instances For
    def Finset.bipartiteAbove {α : Type u_2} {β : Type u_3} (r : αβProp) (t : Finset β) (a : α) [DecidablePred (r a)] :

    Elements of t which are "above" a according to relation r.

    Equations
    Instances For
      theorem Finset.bipartiteBelow_swap {α : Type u_2} {β : Type u_3} (r : αβProp) (t : Finset β) (a : α) [DecidablePred (r a)] :
      theorem Finset.bipartiteAbove_swap {α : Type u_2} {β : Type u_3} (r : αβProp) (s : Finset α) (b : β) [(a : α) → Decidable (r a b)] :
      @[simp]
      theorem Finset.coe_bipartiteBelow {α : Type u_2} {β : Type u_3} (r : αβProp) (s : Finset α) (b : β) [(a : α) → Decidable (r a b)] :
      (bipartiteBelow r s b) = {a : α | a s r a b}
      @[simp]
      theorem Finset.coe_bipartiteAbove {α : Type u_2} {β : Type u_3} (r : αβProp) (t : Finset β) (a : α) [DecidablePred (r a)] :
      (bipartiteAbove r t a) = {b : β | b t r a b}
      @[simp]
      theorem Finset.mem_bipartiteBelow {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {b : β} [(a : α) → Decidable (r a b)] {a : α} :
      a bipartiteBelow r s b a s r a b
      @[simp]
      theorem Finset.mem_bipartiteAbove {α : Type u_2} {β : Type u_3} (r : αβProp) {t : Finset β} {a : α} [DecidablePred (r a)] {b : β} :
      b bipartiteAbove r t a b t r a b
      theorem Finset.prod_prod_bipartiteAbove_eq_prod_prod_bipartiteBelow {R : Type u_1} {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} [CommMonoid R] (f : αβR) [(a : α) → (b : β) → Decidable (r a b)] :
      as, bbipartiteAbove r t a, f a b = bt, abipartiteBelow r s b, f a b
      theorem Finset.sum_sum_bipartiteAbove_eq_sum_sum_bipartiteBelow {R : Type u_1} {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} [AddCommMonoid R] (f : αβR) [(a : α) → (b : β) → Decidable (r a b)] :
      as, bbipartiteAbove r t a, f a b = bt, abipartiteBelow r s b, f a b
      theorem Finset.sum_card_bipartiteAbove_eq_sum_card_bipartiteBelow {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} [(a : α) → (b : β) → Decidable (r a b)] :
      as, (bipartiteAbove r t a).card = bt, (bipartiteBelow r s b).card
      theorem Finset.card_nsmul_le_card_nsmul {R : Type u_1} {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} [OrderedSemiring R] {m n : R} [(a : α) → (b : β) → Decidable (r a b)] (hm : as, m (bipartiteAbove r t a).card) (hn : bt, (bipartiteBelow r s b).card n) :
      s.card m t.card n

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a lower bound on the number of edges while the RHS is an upper bound.

      theorem Finset.card_nsmul_le_card_nsmul' {R : Type u_1} {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} [OrderedSemiring R] {m n : R} [(a : α) → (b : β) → Decidable (r a b)] (hn : bt, n (bipartiteBelow r s b).card) (hm : as, (bipartiteAbove r t a).card m) :
      t.card n s.card m

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a lower bound on the number of edges while the RHS is an upper bound.

      theorem Finset.card_nsmul_lt_card_nsmul_of_lt_of_le {R : Type u_1} {α : Type u_2} {β : Type u_3} [StrictOrderedSemiring R] (r : αβProp) {s : Finset α} {t : Finset β} {m n : R} [(a : α) → (b : β) → Decidable (r a b)] (hs : s.Nonempty) (hm : as, m < (bipartiteAbove r t a).card) (hn : bt, (bipartiteBelow r s b).card n) :
      s.card m < t.card n

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a strict lower bound on the number of edges while the RHS is an upper bound.

      theorem Finset.card_nsmul_lt_card_nsmul_of_le_of_lt {R : Type u_1} {α : Type u_2} {β : Type u_3} [StrictOrderedSemiring R] (r : αβProp) {s : Finset α} {t : Finset β} {m n : R} [(a : α) → (b : β) → Decidable (r a b)] (ht : t.Nonempty) (hm : as, m (bipartiteAbove r t a).card) (hn : bt, (bipartiteBelow r s b).card < n) :
      s.card m < t.card n

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a lower bound on the number of edges while the RHS is a strict upper bound.

      theorem Finset.card_nsmul_lt_card_nsmul_of_lt_of_le' {R : Type u_1} {α : Type u_2} {β : Type u_3} [StrictOrderedSemiring R] (r : αβProp) {s : Finset α} {t : Finset β} {m n : R} [(a : α) → (b : β) → Decidable (r a b)] (ht : t.Nonempty) (hn : bt, n < (bipartiteBelow r s b).card) (hm : as, (bipartiteAbove r t a).card m) :
      t.card n < s.card m

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a strict lower bound on the number of edges while the RHS is an upper bound.

      theorem Finset.card_nsmul_lt_card_nsmul_of_le_of_lt' {R : Type u_1} {α : Type u_2} {β : Type u_3} [StrictOrderedSemiring R] (r : αβProp) {s : Finset α} {t : Finset β} {m n : R} [(a : α) → (b : β) → Decidable (r a b)] (hs : s.Nonempty) (hn : bt, n (bipartiteBelow r s b).card) (hm : as, (bipartiteAbove r t a).card < m) :
      t.card n < s.card m

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a lower bound on the number of edges while the RHS is a strict upper bound.

      theorem Finset.card_mul_le_card_mul {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} {m n : } [(a : α) → (b : β) → Decidable (r a b)] (hm : as, m (bipartiteAbove r t a).card) (hn : bt, (bipartiteBelow r s b).card n) :
      s.card * m t.card * n

      Double counting argument.

      Considering r as a bipartite graph, the LHS is a lower bound on the number of edges while the RHS is an upper bound.

      theorem Finset.card_mul_le_card_mul' {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} {m n : } [(a : α) → (b : β) → Decidable (r a b)] (hn : bt, n (bipartiteBelow r s b).card) (hm : as, (bipartiteAbove r t a).card m) :
      t.card * n s.card * m
      theorem Finset.card_mul_eq_card_mul {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} {m n : } [(a : α) → (b : β) → Decidable (r a b)] (hm : as, (bipartiteAbove r t a).card = m) (hn : bt, (bipartiteBelow r s b).card = n) :
      s.card * m = t.card * n
      theorem Finset.card_le_card_of_forall_subsingleton {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} (hs : as, bt, r a b) (ht : bt, {a : α | a s r a b}.Subsingleton) :
      s.card t.card
      theorem Finset.card_le_card_of_forall_subsingleton' {α : Type u_2} {β : Type u_3} (r : αβProp) {s : Finset α} {t : Finset β} (ht : bt, as, r a b) (hs : as, {b : β | b t r a b}.Subsingleton) :
      t.card s.card
      theorem Fintype.card_le_card_of_leftTotal_unique {α : Type u_2} {β : Type u_3} [Fintype α] [Fintype β] {r : αβProp} (h₁ : Relator.LeftTotal r) (h₂ : Relator.LeftUnique r) :
      card α card β
      theorem Fintype.card_le_card_of_rightTotal_unique {α : Type u_2} {β : Type u_3} [Fintype α] [Fintype β] {r : αβProp} (h₁ : Relator.RightTotal r) (h₂ : Relator.RightUnique r) :
      card β card α