Documentation

Mathlib.Combinatorics.Enumerative.DyckWord

Dyck words #

A Dyck word is a sequence consisting of an equal number n of symbols of two types such that for all prefixes one symbol occurs at least as many times as the other. If the symbols are ( and ) the latter restriction is equivalent to balanced brackets; if they are U = (1, 1) and D = (1, -1) the sequence is a lattice path from (0, 0) to (0, 2n) and the restriction requires the path to never go below the x-axis.

This file defines Dyck words and constructs their bijection with rooted binary trees, one consequence being that the number of Dyck words with length 2 * n is catalan n.

Main definitions #

Main results #

Implementation notes #

While any two-valued type could have been used for DyckStep, a new enumerated type is used here to emphasise that the definition of a Dyck word does not depend on that underlying type.

inductive DyckStep :

A DyckStep is either U or D, corresponding to ( and ) respectively.

Instances For
    Equations
    theorem DyckStep.dichotomy (s : DyckStep) :
    s = U s = D

    Named in analogy to Bool.dichotomy.

    structure DyckWord :

    A Dyck word is a list of DyckSteps with as many Us as Ds and with every prefix having at least as many Us as Ds.

    Instances For
      theorem DyckWord.ext {x y : DyckWord} (toList : x = y) :
      x = y
      Equations
      • instAddDyckWord = { add := fun (p q : DyckWord) => { toList := p ++ q, count_U_eq_count_D := , count_D_le_count_U := } }
      Equations

      Dyck words form an additive cancellative monoid under concatenation, with the empty word as 0.

      Equations
      theorem DyckWord.toList_eq_nil {p : DyckWord} :
      p = [] p = 0
      theorem DyckWord.toList_ne_nil {p : DyckWord} :
      p [] p 0

      The only Dyck word that is an additive unit is the empty word.

      Equations
      theorem DyckWord.head_eq_U (p : DyckWord) (h : p []) :
      (↑p).head h = DyckStep.U

      The first element of a nonempty Dyck word is U.

      theorem DyckWord.getLast_eq_D (p : DyckWord) (h : p []) :
      (↑p).getLast h = DyckStep.D

      The last element of a nonempty Dyck word is D.

      theorem DyckWord.cons_tail_dropLast_concat {p : DyckWord} (h : p 0) :
      DyckStep.U :: (↑p).dropLast.tail ++ [DyckStep.D] = p

      Prefix of a Dyck word as a Dyck word, given that the count of Us and Ds in it are equal.

      Equations
      • p.take i hi = { toList := List.take i p, count_U_eq_count_D := hi, count_D_le_count_U := }
      Instances For

        Suffix of a Dyck word as a Dyck word, given that the count of Us and Ds in the prefix are equal.

        Equations
        • p.drop i hi = { toList := List.drop i p, count_U_eq_count_D := , count_D_le_count_U := }
        Instances For

          Nest p in one pair of brackets, i.e. x becomes (x).

          Equations
          Instances For
            @[simp]
            theorem DyckWord.nest_ne_zero {p : DyckWord} :
            p.nest 0

            A property stating that p is nonempty and strictly positive in its interior, i.e. is of the form (x) with x a Dyck word.

            Equations
            Instances For
              theorem DyckWord.IsNested.nest {p : DyckWord} :
              p.nest.IsNested
              def DyckWord.denest (p : DyckWord) (hn : p.IsNested) :

              Denest p, i.e. (x) becomes x, given that p.IsNested.

              Equations
              • p.denest hn = { toList := (↑p).dropLast.tail, count_U_eq_count_D := , count_D_le_count_U := }
              Instances For
                theorem DyckWord.nest_denest (p : DyckWord) (hn : p.IsNested) :
                (p.denest hn).nest = p
                theorem DyckWord.denest_nest (p : DyckWord) :
                p.nest.denest = p

                The semilength of a Dyck word is half of the number of DyckSteps in it, or equivalently its number of Us.

                Equations
                Instances For
                  @[simp]
                  theorem DyckWord.semilength_add {p q : DyckWord} :
                  (p + q).semilength = p.semilength + q.semilength
                  @[simp]
                  theorem DyckWord.semilength_nest {p : DyckWord} :
                  p.nest.semilength = p.semilength + 1
                  @[simp]
                  theorem DyckWord.two_mul_semilength_eq_length {p : DyckWord} :
                  2 * p.semilength = (↑p).length

                  p.firstReturn is 0 if p = 0 and the index of the D matching the initial U otherwise.

                  Equations
                  Instances For
                    theorem DyckWord.firstReturn_pos {p : DyckWord} (h : p 0) :
                    0 < p.firstReturn
                    theorem DyckWord.firstReturn_lt_length {p : DyckWord} (h : p 0) :
                    p.firstReturn < (↑p).length
                    theorem DyckWord.count_take_firstReturn_add_one {p : DyckWord} (h : p 0) :
                    List.count DyckStep.U (List.take (p.firstReturn + 1) p) = List.count DyckStep.D (List.take (p.firstReturn + 1) p)
                    @[simp]
                    theorem DyckWord.firstReturn_add {p q : DyckWord} :
                    (p + q).firstReturn = if p = 0 then q.firstReturn else p.firstReturn
                    @[simp]
                    theorem DyckWord.firstReturn_nest {p : DyckWord} :
                    p.nest.firstReturn = (↑p).length + 1

                    The left part of the Dyck word decomposition, inside the U, D pair that firstReturn refers to. insidePart 0 = 0.

                    Equations
                    • p.insidePart = if h : p = 0 then 0 else (p.take (p.firstReturn + 1) ).denest
                    Instances For

                      The right part of the Dyck word decomposition, outside the U, D pair that firstReturn refers to. outsidePart 0 = 0.

                      Equations
                      • p.outsidePart = if h : p = 0 then 0 else p.drop (p.firstReturn + 1)
                      Instances For
                        @[simp]
                        theorem DyckWord.insidePart_add {p q : DyckWord} (h : p 0) :
                        (p + q).insidePart = p.insidePart
                        @[simp]
                        theorem DyckWord.outsidePart_add {p q : DyckWord} (h : p 0) :
                        (p + q).outsidePart = p.outsidePart + q
                        @[simp]
                        theorem DyckWord.insidePart_nest {p : DyckWord} :
                        p.nest.insidePart = p
                        @[simp]
                        theorem DyckWord.outsidePart_nest {p : DyckWord} :
                        p.nest.outsidePart = 0
                        @[simp]
                        theorem DyckWord.nest_insidePart_add_outsidePart {p : DyckWord} (h : p 0) :
                        p.insidePart.nest + p.outsidePart = p
                        theorem DyckWord.semilength_insidePart_add_semilength_outsidePart_add_one {p : DyckWord} (h : p 0) :
                        p.insidePart.semilength + p.outsidePart.semilength + 1 = p.semilength
                        theorem DyckWord.semilength_insidePart_lt {p : DyckWord} (h : p 0) :
                        p.insidePart.semilength < p.semilength
                        theorem DyckWord.semilength_outsidePart_lt {p : DyckWord} (h : p 0) :
                        p.outsidePart.semilength < p.semilength
                        @[irreducible]
                        theorem DyckWord.le_add_self (p q : DyckWord) :
                        q p + q
                        theorem DyckWord.infix_of_le {p q : DyckWord} (h : p q) :
                        p <:+: q
                        theorem DyckWord.le_of_suffix {p q : DyckWord} (h : p <:+ q) :
                        p q

                        Partial order on Dyck words: p ≤ q if a (possibly empty) sequence of insidePart and outsidePart operations can turn q into p.

                        Equations

                        Equivalence between Dyck words and rooted binary trees.

                        Equations
                        Instances For
                          @[irreducible]
                          theorem DyckWord.semilength_eq_numNodes_equivTree (p : DyckWord) :
                          p.semilength = (equivTree p).numNodes
                          def DyckWord.equivTreesOfNumNodesEq (n : ) :
                          { p : DyckWord // p.semilength = n } { x : Tree Unit // x Tree.treesOfNumNodesEq n }

                          Equivalence between Dyck words of semilength n and rooted binary trees with n internal nodes.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            There are catalan n Dyck words of semilength n (or length 2 * n).

                            Extension for the positivity tactic: p.firstReturn is positive if p is nonzero.

                            Instances For