Documentation

Mathlib.Combinatorics.SetFamily.Shatter

Shattering families #

This file defines the shattering property and VC-dimension of set families.

Main declarations #

TODO #

def Finset.Shatters {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) (s : Finset α) :

A set family 𝒜 shatters a set s if all subsets of s can be obtained as the intersection of s and some element of the set family, and we denote this 𝒜.Shatters s. We also say that s is traced by 𝒜.

Equations
  • 𝒜.Shatters s = ∀ ⦃t : Finset α⦄, t su𝒜, s u = t
Instances For
    instance Finset.instDecidablePredShatters {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
    DecidablePred 𝒜.Shatters
    Equations
    theorem Finset.Shatters.exists_inter_eq_singleton {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} {a : α} (hs : 𝒜.Shatters s) (ha : a s) :
    t𝒜, s t = {a}
    theorem Finset.Shatters.mono_left {α : Type u_1} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s : Finset α} (h : 𝒜 ) (h𝒜 : 𝒜.Shatters s) :
    .Shatters s
    theorem Finset.Shatters.mono_right {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s t : Finset α} (h : t s) (hs : 𝒜.Shatters s) :
    𝒜.Shatters t
    theorem Finset.Shatters.exists_superset {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜.Shatters s) :
    t𝒜, s t
    theorem Finset.shatters_of_forall_subset {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : ts, t 𝒜) :
    𝒜.Shatters s
    theorem Finset.Shatters.nonempty {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜.Shatters s) :
    𝒜.Nonempty
    @[simp]
    theorem Finset.shatters_empty {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
    𝒜.Shatters 𝒜.Nonempty
    theorem Finset.Shatters.subset_iff {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s t : Finset α} (h : 𝒜.Shatters s) :
    t s u𝒜, s u = t
    theorem Finset.shatters_iff {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
    𝒜.Shatters s Finset.image (fun (t : Finset α) => s t) 𝒜 = s.powerset
    theorem Finset.univ_shatters {α : Type u_1} [DecidableEq α] {s : Finset α} [Fintype α] :
    Finset.univ.Shatters s
    @[simp]
    theorem Finset.shatters_univ {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} [Fintype α] :
    𝒜.Shatters Finset.univ 𝒜 = Finset.univ
    def Finset.shatterer {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :

    The set family of sets that are shattered by 𝒜.

    Equations
    • 𝒜.shatterer = Finset.filter (fun (s : Finset α) => 𝒜.Shatters s) (𝒜.biUnion Finset.powerset)
    Instances For
      @[simp]
      theorem Finset.mem_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
      s 𝒜.shatterer 𝒜.Shatters s
      theorem Finset.shatterer_mono {α : Type u_1} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} (h : 𝒜 ) :
      𝒜.shatterer .shatterer
      theorem Finset.subset_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h : IsLowerSet 𝒜) :
      𝒜 𝒜.shatterer
      @[simp]
      theorem Finset.isLowerSet_shatterer {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :
      IsLowerSet 𝒜.shatterer
      @[simp]
      theorem Finset.shatterer_eq {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
      𝒜.shatterer = 𝒜 IsLowerSet 𝒜
      @[simp]
      theorem Finset.shatterer_idem {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
      𝒜.shatterer.shatterer = 𝒜.shatterer
      @[simp]
      theorem Finset.shatters_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
      𝒜.shatterer.Shatters s 𝒜.Shatters s
      theorem Finset.Shatters.shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
      𝒜.Shatters s𝒜.shatterer.Shatters s

      Alias of the reverse direction of Finset.shatters_shatterer.

      theorem Finset.card_le_card_shatterer {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :
      𝒜.card 𝒜.shatterer.card

      Pajor's variant of the Sauer-Shelah lemma.

      theorem Finset.Shatters.of_compression {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} {a : α} (hs : (Down.compression a 𝒜).Shatters s) :
      𝒜.Shatters s
      theorem Finset.shatterer_compress_subset_shatterer {α : Type u_1} [DecidableEq α] (a : α) (𝒜 : Finset (Finset α)) :
      (Down.compression a 𝒜).shatterer 𝒜.shatterer

      Vapnik-Chervonenkis dimension #

      def Finset.vcDim {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :

      The Vapnik-Chervonenkis dimension of a set family is the maximal size of a set it shatters.

      Equations
      • 𝒜.vcDim = 𝒜.shatterer.sup Finset.card
      Instances For
        theorem Finset.vcDim_mono {α : Type u_1} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} (h𝒜ℬ : 𝒜 ) :
        𝒜.vcDim .vcDim
        theorem Finset.Shatters.card_le_vcDim {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (hs : 𝒜.Shatters s) :
        s.card 𝒜.vcDim
        theorem Finset.vcDim_compress_le {α : Type u_1} [DecidableEq α] (a : α) (𝒜 : Finset (Finset α)) :
        (Down.compression a 𝒜).vcDim 𝒜.vcDim

        Down-compressing decreases the VC-dimension.

        theorem Finset.card_shatterer_le_sum_vcDim {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} [Fintype α] :
        𝒜.shatterer.card kFinset.Iic 𝒜.vcDim, (Fintype.card α).choose k

        The Sauer-Shelah lemma.