Disjoint sum of graphs #
This file defines the disjoint sum of graphs. The disjoint sum of G : SimpleGraph α
and
H : SimpleGraph β
is a graph on α ⊕ β
where u
and v
are adjacent if and only if they are
both in G
and adjacent in G
, or they are both in H
and adjacent in H
.
Main declarations #
SimpleGraph.Sum
: The disjoint sum of graphs.
Notation #
G ⊕g H
: The disjoint sum ofG
andH
.
def
SimpleGraph.sum
{α : Type u_1}
{β : Type u_2}
(G : SimpleGraph α)
(H : SimpleGraph β)
:
SimpleGraph (α ⊕ β)
Disjoint sum of G
and H
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SimpleGraph.sum_adj
{α : Type u_1}
{β : Type u_2}
(G : SimpleGraph α)
(H : SimpleGraph β)
(x✝ x✝¹ : α ⊕ β)
:
Disjoint sum of G
and H
.
Equations
- SimpleGraph.«term_⊕g_» = Lean.ParserDescr.trailingNode `SimpleGraph.«term_⊕g_» 60 60 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊕g ") (Lean.ParserDescr.cat `term 61))
Instances For
The disjoint sum is commutative up to isomorphism. Iso.sumComm
as a graph isomorphism.
Equations
- SimpleGraph.Iso.sumComm = { toEquiv := Equiv.sumComm α β, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
SimpleGraph.Iso.sumComm_apply
{α : Type u_1}
{β : Type u_2}
{G : SimpleGraph α}
{H : SimpleGraph β}
(a✝ : α ⊕ β)
:
sumComm a✝ = a✝.swap
@[simp]
theorem
SimpleGraph.Iso.sumComm_symm_apply
{α : Type u_1}
{β : Type u_2}
{G : SimpleGraph α}
{H : SimpleGraph β}
(a✝ : β ⊕ α)
:
(RelIso.symm sumComm) a✝ = a✝.swap
def
SimpleGraph.Iso.sumAssoc
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{G : SimpleGraph α}
{H : SimpleGraph β}
{I : SimpleGraph γ}
:
The disjoint sum is associative up to isomorphism. Iso.sumAssoc
as a graph isomorphism.
Equations
- SimpleGraph.Iso.sumAssoc = { toEquiv := Equiv.sumAssoc α β γ, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
SimpleGraph.Iso.sumAssoc_symm_apply
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{G : SimpleGraph α}
{H : SimpleGraph β}
{I : SimpleGraph γ}
(a✝ : α ⊕ β ⊕ γ)
:
@[simp]
theorem
SimpleGraph.Iso.sumAssoc_apply
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{G : SimpleGraph α}
{H : SimpleGraph β}
{I : SimpleGraph γ}
(a✝ : (α ⊕ β) ⊕ γ)
:
def
SimpleGraph.Embedding.sumInl
{α : Type u_1}
{β : Type u_2}
{G : SimpleGraph α}
{H : SimpleGraph β}
:
The embedding of G
into G ⊕g H
.
Equations
- SimpleGraph.Embedding.sumInl = { toFun := fun (u : α) => Sum.inl u, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
SimpleGraph.Embedding.sumInl_apply
{α : Type u_1}
{β : Type u_2}
{G : SimpleGraph α}
{H : SimpleGraph β}
(u : α)
:
def
SimpleGraph.Embedding.sumInr
{α : Type u_1}
{β : Type u_2}
{G : SimpleGraph α}
{H : SimpleGraph β}
:
The embedding of H
into G ⊕g H
.
Equations
- SimpleGraph.Embedding.sumInr = { toFun := fun (u : β) => Sum.inr u, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
SimpleGraph.Embedding.sumInr_apply
{α : Type u_1}
{β : Type u_2}
{G : SimpleGraph α}
{H : SimpleGraph β}
(u : β)
: