Documentation

Mathlib.Combinatorics.SimpleGraph.Turan

Turán's theorem #

In this file we prove Turán's theorem, the first important result of extremal graph theory, which states that the r + 1-cliquefree graph on n vertices with the most edges is the complete r-partite graph with part sizes as equal as possible (turanGraph n r).

The forward direction of the proof performs "Zykov symmetrisation", which first shows constructively that non-adjacency is an equivalence relation in a maximal graph, so it must be complete multipartite with the parts being the equivalence classes. Then basic manipulations show that the graph is isomorphic to the Turán graph for the given parameters.

For the reverse direction we first show that a Turán-maximal graph exists, then transfer the property through turanGraph n r using the isomorphism provided by the forward direction.

Main declarations #

References #

def SimpleGraph.IsTuranMaximal {V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] (r : ) :

An r + 1-cliquefree graph is r-Turán-maximal if any other r + 1-cliquefree graph on the same vertex set has the same or fewer number of edges.

Equations
  • G.IsTuranMaximal r = (G.CliqueFree (r + 1) ∀ (H : SimpleGraph V) [inst_1 : DecidableRel H.Adj], H.CliqueFree (r + 1)H.edgeFinset.card G.edgeFinset.card)
Instances For
    theorem SimpleGraph.IsTuranMaximal.le_iff_eq {V : Type u_1} [Fintype V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } {H : SimpleGraph V} (hG : G.IsTuranMaximal r) (hH : H.CliqueFree (r + 1)) :
    G H G = H

    The canonical r + 1-cliquefree Turán graph on n vertices.

    Equations
    Instances For
      Equations
      • SimpleGraph.turanGraph.instDecidableRelAdj = id inferInstance
      theorem SimpleGraph.turanGraph_cliqueFree {n : } {r : } (hr : 0 < r) :
      (SimpleGraph.turanGraph n r).CliqueFree (r + 1)
      theorem SimpleGraph.not_cliqueFree_of_isTuranMaximal {V : Type u_1} [Fintype V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (hr : 0 < r) (hn : r Fintype.card V) (hG : G.IsTuranMaximal r) :
      ¬G.CliqueFree r

      An r + 1-cliquefree Turán-maximal graph is not r-cliquefree if it can accommodate such a clique.

      theorem SimpleGraph.exists_isTuranMaximal {V : Type u_1} [Fintype V] [DecidableEq V] {r : } (hr : 0 < r) :
      ∃ (H : SimpleGraph V) (x : DecidableRel H.Adj), H.IsTuranMaximal r
      theorem SimpleGraph.IsTuranMaximal.degree_eq_of_not_adj {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } {s : V} {t : V} (h : G.IsTuranMaximal r) (hn : ¬G.Adj s t) :
      G.degree s = G.degree t

      In a Turán-maximal graph, non-adjacent vertices have the same degree.

      theorem SimpleGraph.IsTuranMaximal.not_adj_trans {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } {s : V} {t : V} {u : V} (h : G.IsTuranMaximal r) (hts : ¬G.Adj t s) (hsu : ¬G.Adj s u) :
      ¬G.Adj t u

      In a Turán-maximal graph, non-adjacency is transitive.

      theorem SimpleGraph.IsTuranMaximal.equivalence_not_adj {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :
      Equivalence fun (x x_1 : V) => ¬G.Adj x x_1

      In a Turán-maximal graph, non-adjacency is an equivalence relation.

      def SimpleGraph.IsTuranMaximal.setoid {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :

      The non-adjacency setoid over the vertices of a Turán-maximal graph induced by equivalence_not_adj.

      Equations
      • h.setoid = { r := fun (x x_1 : V) => ¬G.Adj x x_1, iseqv := }
      Instances For
        instance SimpleGraph.IsTuranMaximal.instDecidableRelR {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :
        DecidableRel Setoid.r
        Equations
        def SimpleGraph.IsTuranMaximal.finpartition {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :
        Finpartition Finset.univ

        The finpartition derived from h.setoid.

        Equations
        Instances For
          theorem SimpleGraph.IsTuranMaximal.not_adj_iff_part_eq {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } {s : V} {t : V} (h : G.IsTuranMaximal r) :
          ¬G.Adj s t h.finpartition.part s = h.finpartition.part t
          theorem SimpleGraph.IsTuranMaximal.degree_eq_card_sub_part_card {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } {s : V} (h : G.IsTuranMaximal r) :
          G.degree s = Fintype.card V - (h.finpartition.part s).card
          theorem SimpleGraph.IsTuranMaximal.isEquipartition {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :
          h.finpartition.IsEquipartition

          The parts of a Turán-maximal graph form an equipartition.

          theorem SimpleGraph.IsTuranMaximal.card_parts_le {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :
          h.finpartition.parts.card r
          theorem SimpleGraph.IsTuranMaximal.card_parts {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } (h : G.IsTuranMaximal r) :
          h.finpartition.parts.card = min (Fintype.card V) r

          There are min n r parts in a graph on n vertices satisfying G.IsTuranMaximal r. min handles the n < r case, when G is complete but still r + 1-cliquefree for having insufficiently many vertices.

          Turán's theorem, forward direction.

          Any r + 1-cliquefree Turán-maximal graph on n vertices is isomorphic to turanGraph n r.

          theorem SimpleGraph.isTuranMaximal_of_iso {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {n : } {r : } (f : G ≃g SimpleGraph.turanGraph n r) (hr : 0 < r) :
          G.IsTuranMaximal r

          Turán's theorem, reverse direction.

          Any graph isomorphic to turanGraph n r is itself Turán-maximal if 0 < r.

          theorem SimpleGraph.IsTuranMaximal.iso {V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] {r : } {W : Type u_2} [Fintype W] [DecidableEq W] {H : SimpleGraph W} [DecidableRel H.Adj] (h : G.IsTuranMaximal r) (f : G ≃g H) (hr : 0 < r) :
          H.IsTuranMaximal r

          Turán-maximality with 0 < r transfers across graph isomorphisms.

          theorem SimpleGraph.isTuranMaximal_turanGraph {n : } {r : } (hr : 0 < r) :
          (SimpleGraph.turanGraph n r).IsTuranMaximal r

          For 0 < r, turanGraph n r is Turán-maximal.

          Turán's theorem. turanGraph n r is, up to isomorphism, the unique r + 1-cliquefree Turán-maximal graph on n vertices.