Documentation

Mathlib.Combinatorics.SimpleGraph.UniversalVerts

Universal Vertices #

This file defines the set of universal vertices: those vertices that are connected to all others. In addition, it describes results when considering connected components of the graph where universal vertices are deleted. This particular graph plays a role in the proof of Tutte's Theorem.

Main definitions #

The set of vertices that are connected to all other vertices.

Equations
  • G.universalVerts = {v : V | ∀ ⦃w : V⦄, v wG.Adj w v}
Instances For
    theorem SimpleGraph.isClique_universalVerts {V : Type u_1} (G : SimpleGraph V) :
    G.IsClique G.universalVerts
    def SimpleGraph.deleteUniversalVerts {V : Type u_1} (G : SimpleGraph V) :
    G.Subgraph

    The subgraph of G with the universal vertices removed.

    Equations
    • G.deleteUniversalVerts = .deleteVerts G.universalVerts
    Instances For
      @[simp]
      theorem SimpleGraph.deleteUniversalVerts_adj {V : Type u_1} (G : SimpleGraph V) (u v : V) :
      G.deleteUniversalVerts.Adj u v = (uG.universalVerts vG.universalVerts G.Adj u v)
      @[simp]
      theorem SimpleGraph.deleteUniversalVerts_verts {V : Type u_1} (G : SimpleGraph V) :
      G.deleteUniversalVerts.verts = Set.univ \ G.universalVerts
      theorem SimpleGraph.Subgraph.IsMatching.exists_of_universalVerts {V : Type u_1} {G : SimpleGraph V} [Fintype V] {s : Set V} (h : Disjoint G.universalVerts s) (hc : s.ncard G.universalVerts.ncard) :
      tG.universalVerts, ∃ (M : G.Subgraph), M.verts = s t M.IsMatching