Documentation

Mathlib.Combinatorics.SimpleGraph.Matching

Matchings #

A matching for a simple graph is a set of disjoint pairs of adjacent vertices, and the set of all the vertices in a matching is called its support (and sometimes the vertices in the support are said to be saturated by the matching). A perfect matching is a matching whose support contains every vertex of the graph.

In this module, we represent a matching as a subgraph whose vertices are each incident to at most one edge, and the edges of the subgraph represent the paired vertices.

Main definitions #

TODO #

def SimpleGraph.Subgraph.IsMatching {V : Type u_1} {G : SimpleGraph V} (M : G.Subgraph) :

The subgraph M of G is a matching if every vertex of M is incident to exactly one edge in M. We say that the vertices in M.support are matched or saturated.

Equations
  • M.IsMatching = ∀ ⦃v : V⦄, v M.verts∃! w : V, M.Adj v w
Instances For
    noncomputable def SimpleGraph.Subgraph.IsMatching.toEdge {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} (h : M.IsMatching) (v : M.verts) :
    M.edgeSet

    Given a vertex, returns the unique edge of the matching it is incident to.

    Equations
    Instances For
      theorem SimpleGraph.Subgraph.IsMatching.toEdge_eq_of_adj {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} {v w : V} (h : M.IsMatching) (hv : v M.verts) (hvw : M.Adj v w) :
      h.toEdge v, hv = s(v, w), hvw
      theorem SimpleGraph.Subgraph.IsMatching.toEdge.surjective {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} (h : M.IsMatching) :
      theorem SimpleGraph.Subgraph.IsMatching.toEdge_eq_toEdge_of_adj {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} {v w : V} (h : M.IsMatching) (hv : v M.verts) (hw : w M.verts) (ha : M.Adj v w) :
      h.toEdge v, hv = h.toEdge w, hw
      theorem SimpleGraph.Subgraph.IsMatching.map_ofLE {V : Type u_1} {G G' : SimpleGraph V} {M : G.Subgraph} (h : M.IsMatching) (hGG' : G G') :
      (Subgraph.map (Hom.ofLE hGG') M).IsMatching
      theorem SimpleGraph.Subgraph.IsMatching.sup {V : Type u_1} {G : SimpleGraph V} {M M' : G.Subgraph} (hM : M.IsMatching) (hM' : M'.IsMatching) (hd : Disjoint M.support M'.support) :
      (M M').IsMatching
      theorem SimpleGraph.Subgraph.IsMatching.iSup {V : Type u_1} {G : SimpleGraph V} {ι : Type u_3} {f : ιG.Subgraph} (hM : ∀ (i : ι), (f i).IsMatching) (hd : Pairwise fun (i j : ι) => Disjoint (f i).support (f j).support) :
      (⨆ (i : ι), f i).IsMatching
      theorem SimpleGraph.Subgraph.IsMatching.subgraphOfAdj {V : Type u_1} {G : SimpleGraph V} {v w : V} (h : G.Adj v w) :
      (G.subgraphOfAdj h).IsMatching
      theorem SimpleGraph.Subgraph.IsMatching.coeSubgraph {V : Type u_1} {G : SimpleGraph V} {G' : G.Subgraph} {M : G'.coe.Subgraph} (hM : M.IsMatching) :
      (Subgraph.coeSubgraph M).IsMatching
      theorem SimpleGraph.Subgraph.IsMatching.exists_of_disjoint_sets_of_equiv {V : Type u_1} {G : SimpleGraph V} {s t : Set V} (h : Disjoint s t) (f : s t) (hadj : ∀ (v : s), G.Adj v (f v)) :
      ∃ (M : G.Subgraph), M.verts = s t M.IsMatching
      theorem SimpleGraph.Subgraph.IsMatching.map {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {M : G.Subgraph} (f : G →g G') (hf : Function.Injective f) (hM : M.IsMatching) :
      (Subgraph.map f M).IsMatching
      @[simp]
      theorem SimpleGraph.Subgraph.Iso.isMatching_map {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {M : G.Subgraph} (f : G ≃g G') :
      (Subgraph.map f.toHom M).IsMatching M.IsMatching
      def SimpleGraph.Subgraph.IsPerfectMatching {V : Type u_1} {G : SimpleGraph V} (M : G.Subgraph) :

      The subgraph M of G is a perfect matching on G if it's a matching and every vertex G is matched.

      Equations
      • M.IsPerfectMatching = (M.IsMatching M.IsSpanning)
      Instances For
        theorem SimpleGraph.Subgraph.IsMatching.support_eq_verts {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} (h : M.IsMatching) :
        M.support = M.verts
        theorem SimpleGraph.Subgraph.isMatching_iff_forall_degree {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} [(v : V) → Fintype (M.neighborSet v)] :
        M.IsMatching vM.verts, M.degree v = 1
        theorem SimpleGraph.Subgraph.IsMatching.even_card {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} [Fintype M.verts] (h : M.IsMatching) :
        Even M.verts.toFinset.card
        theorem SimpleGraph.Subgraph.isPerfectMatching_iff {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} :
        M.IsPerfectMatching ∀ (v : V), ∃! w : V, M.Adj v w
        theorem SimpleGraph.Subgraph.isPerfectMatching_iff_forall_degree {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} [(v : V) → Fintype (M.neighborSet v)] :
        M.IsPerfectMatching ∀ (v : V), M.degree v = 1
        theorem SimpleGraph.Subgraph.IsPerfectMatching.even_card {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} [Fintype V] (h : M.IsPerfectMatching) :
        theorem SimpleGraph.Subgraph.IsMatching.induce_connectedComponent {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} (h : M.IsMatching) (c : G.ConnectedComponent) :
        (M.induce (M.verts c.supp)).IsMatching
        theorem SimpleGraph.Subgraph.IsPerfectMatching.induce_connectedComponent_isMatching {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} (h : M.IsPerfectMatching) (c : G.ConnectedComponent) :
        (M.induce c.supp).IsMatching
        @[simp]
        theorem SimpleGraph.Subgraph.IsPerfectMatching.toSubgraph_spanningCoe_iff {V : Type u_1} {G G' : SimpleGraph V} {M : G.Subgraph} (h : M.spanningCoe G') :
        (toSubgraph M.spanningCoe h).IsPerfectMatching M.IsPerfectMatching
        theorem SimpleGraph.ConnectedComponent.even_card_of_isPerfectMatching {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} [Fintype V] [DecidableEq V] [DecidableRel G.Adj] (c : G.ConnectedComponent) (hM : M.IsPerfectMatching) :
        Even (Fintype.card c.supp)
        theorem SimpleGraph.ConnectedComponent.odd_matches_node_outside {V : Type u_1} {G : SimpleGraph V} {M : G.Subgraph} [Finite V] {u : Set V} {c : (.deleteVerts u).coe.ConnectedComponent} (hM : M.IsPerfectMatching) (codd : Odd (Nat.card c.supp)) :
        wu, ∃ (v : (.deleteVerts u).verts), M.Adj (↑v) w v c.supp

        A graph is matching free if it has no perfect matching. It does not make much sense to consider a graph being free of just matchings, because any non-trivial graph has those.

        Equations
        • G.IsMatchingFree = ∀ (M : G.Subgraph), ¬M.IsPerfectMatching
        Instances For
          theorem SimpleGraph.IsMatchingFree.mono {V : Type u_1} {G G' : SimpleGraph V} (h : G G') (hmf : G'.IsMatchingFree) :
          G.IsMatchingFree
          theorem SimpleGraph.exists_maximal_isMatchingFree {V : Type u_1} {G : SimpleGraph V} [Finite V] (h : G.IsMatchingFree) :
          ∃ (Gmax : SimpleGraph V), G Gmax Gmax.IsMatchingFree G' > Gmax, ∃ (M : G'.Subgraph), M.IsPerfectMatching
          def SimpleGraph.IsCycles {V : Type u_1} (G : SimpleGraph V) :

          A graph G consists of a set of cycles, if each vertex is either isolated or connected to exactly two vertices. This is used to create new matchings by taking the symmDiff with cycles. The definition of symmDiff that makes sense is the one for SimpleGraph. The symmDiff for SimpleGraph.Subgraph deriving from the lattice structure also affects the vertices included, which we do not want in this case. This is why this property is defined for SimpleGraph, rather than SimpleGraph.Subgraph.

          Equations
          • G.IsCycles = ∀ ⦃v : V⦄, (G.neighborSet v).Nonempty(G.neighborSet v).ncard = 2
          Instances For
            theorem SimpleGraph.IsCycles.other_adj_of_adj {V : Type u_1} {G : SimpleGraph V} {v w : V} (h : G.IsCycles) (hadj : G.Adj v w) :
            ∃ (w' : V), w w' G.Adj v w'

            Given a vertex with one edge in a graph of cycles this gives the other edge incident to the same vertex.

            theorem SimpleGraph.Subgraph.IsPerfectMatching.symmDiff_spanningCoe_IsCycles {V : Type u_1} {G G' : SimpleGraph V} {M : G.Subgraph} {M' : G'.Subgraph} (hM : M.IsPerfectMatching) (hM' : M'.IsPerfectMatching) :
            (symmDiff M.spanningCoe M'.spanningCoe).IsCycles

            A graph G is alternating with respect to some other graph G', if exactly every other edge in G is in G'. Note that the degree of each vertex needs to be at most 2 for this to be possible. This property is used to create new matchings using symmDiff. The definition of symmDiff that makes sense is the one for SimpleGraph. The symmDiff for SimpleGraph.Subgraph deriving from the lattice structure also affects the vertices included, which we do not want in this case. This is why this property, just like IsCycles, is defined for SimpleGraph rather than SimpleGraph.Subgraph.

            Equations
            • G.IsAlternating G' = ∀ ⦃v w w' : V⦄, w w'G.Adj v wG.Adj v w'(G'.Adj v w ¬G'.Adj v w')
            Instances For
              theorem SimpleGraph.IsPerfectMatching.symmDiff_spanningCoe_of_isAlternating {V : Type u_1} {G G' : SimpleGraph V} {M : G.Subgraph} (hM : M.IsPerfectMatching) (hG' : G'.IsAlternating M.spanningCoe) (hG'cyc : G'.IsCycles) :
              (toSubgraph (symmDiff M.spanningCoe G') ).IsPerfectMatching