Documentation

Mathlib.Data.Set.Card.Arithmetic

Results using cardinal arithmetic #

This file contains results using cardinal arithmetic that are not in the main cardinal theory files. It has been separated out to not burden Matlib.Data.Set.Card with extra imports.

Main results #

theorem Finset.exists_disjoint_union_of_even_card {α : Type u_1} [DecidableEq α] {s : Finset α} (he : Even s.card) :
∃ (t : Finset α) (u : Finset α), t u = s Disjoint t u t.card = u.card
theorem Finset.exists_disjoint_union_of_even_card_iff {α : Type u_1} [DecidableEq α] (s : Finset α) :
Even s.card ∃ (t : Finset α) (u : Finset α), t u = s Disjoint t u t.card = u.card
@[simp]
theorem finsum_one {α : Type u_1} {s : Set α} :
∑ᶠ (i : α) (_ : i s), 1 = s.ncard
theorem Set.Infinite.exists_union_disjoint_cardinal_eq_of_infinite {α : Type u_1} {s : Set α} (h : s.Infinite) :
∃ (t : Set α) (u : Set α), t u = s Disjoint t u Cardinal.mk t = Cardinal.mk u
theorem Set.exists_union_disjoint_cardinal_eq_of_even {α : Type u_1} {s : Set α} (he : Even s.ncard) :
∃ (t : Set α) (u : Set α), t u = s Disjoint t u Cardinal.mk t = Cardinal.mk u
theorem Set.exists_union_disjoint_ncard_eq_of_even {α : Type u_1} {s : Set α} (he : Even s.ncard) :
∃ (t : Set α) (u : Set α), t u = s Disjoint t u t.ncard = u.ncard
theorem Set.exists_union_disjoint_cardinal_eq_iff {α : Type u_1} (s : Set α) :
Even s.ncard ∃ (t : Set α) (u : Set α), t u = s Disjoint t u Cardinal.mk t = Cardinal.mk u
theorem Set.Finite.ncard_biUnion {α : Type u_1} {ι : Type u_2} {t : Set ι} (ht : t.Finite) {s : ιSet α} (hs : it, (s i).Finite) (h : t.PairwiseDisjoint s) :
(⋃ it, s i).ncard = ∑ᶠ (i : ι) (_ : i t), (s i).ncard
theorem Set.ncard_iUnion_of_finite {α : Type u_1} {ι : Type u_2} [Finite ι] {s : ιSet α} (hs : ∀ (i : ι), (s i).Finite) (h : Pairwise (Function.onFun Disjoint s)) :
(⋃ (i : ι), s i).ncard = ∑ᶠ (i : ι), (s i).ncard
theorem Set.Finite.encard_biUnion {α : Type u_1} {ι : Type u_2} {t : Set ι} (ht : t.Finite) {s : ιSet α} (hs : t.PairwiseDisjoint s) :
(⋃ it, s i).encard = ∑ᶠ (i : ι) (_ : i t), (s i).encard
theorem Set.encard_iUnion_of_finite {α : Type u_1} {ι : Type u_2} [Finite ι] {s : ιSet α} (hs : Pairwise (Function.onFun Disjoint s)) :
(⋃ (i : ι), s i).encard = ∑ᶠ (i : ι), (s i).encard