Edge deletion #
This file defines operations deleting the edges of a simple graph and proves theorems in the finite case.
Main definitions #
SimpleGraph.deleteEdges G s
is the simple graphG
with the edgess : Set (Sym2 V)
removed from the edge set.SimpleGraph.deleteFar G p r
is the predicate that a graph isr
-delete-far from a propertyp
, that is, at leastr
edges must be deleted to satisfyp
.
Given a set of vertex pairs, remove all of the corresponding edges from the graph's edge set, if present.
See also: SimpleGraph.Subgraph.deleteEdges
.
Equations
- G.deleteEdges s = G \ SimpleGraph.fromEdgeSet s
Instances For
@[simp]
theorem
SimpleGraph.deleteEdges_adj
{V : Type u_1}
{v w : V}
{G : SimpleGraph V}
{s : Set (Sym2 V)}
:
@[simp]
@[simp]
theorem
SimpleGraph.deleteEdges_deleteEdges
{V : Type u_1}
{G : SimpleGraph V}
(s s' : Set (Sym2 V))
:
@[simp]
@[simp]
theorem
SimpleGraph.deleteEdges_anti
{V : Type u_1}
{G : SimpleGraph V}
{s₁ s₂ : Set (Sym2 V)}
(h : s₁ ⊆ s₂)
:
theorem
SimpleGraph.deleteEdges_mono
{V : Type u_1}
{G H : SimpleGraph V}
{s : Set (Sym2 V)}
(h : G ≤ H)
:
@[simp]
theorem
SimpleGraph.deleteEdges_eq_inter_edgeSet
{V : Type u_1}
{G : SimpleGraph V}
(s : Set (Sym2 V))
:
theorem
SimpleGraph.edgeFinset_deleteEdges
{V : Type u_1}
{G : SimpleGraph V}
[DecidableEq V]
[Fintype ↑G.edgeSet]
(s : Finset (Sym2 V))
[Fintype ↑(G.deleteEdges ↑s).edgeSet]
:
def
SimpleGraph.DeleteFar
{V : Type u_1}
(G : SimpleGraph V)
{𝕜 : Type u_2}
[Ring 𝕜]
[PartialOrder 𝕜]
[Fintype ↑G.edgeSet]
(p : SimpleGraph V → Prop)
(r : 𝕜)
:
A graph is r
-delete-far from a property p
if we must delete at least r
edges from it to
get a graph with the property p
.
Equations
- G.DeleteFar p r = ∀ ⦃s : Finset (Sym2 V)⦄, s ⊆ G.edgeFinset → p (G.deleteEdges ↑s) → r ≤ ↑s.card
Instances For
theorem
SimpleGraph.deleteFar_iff
{V : Type u_1}
{G : SimpleGraph V}
{𝕜 : Type u_2}
[Ring 𝕜]
[PartialOrder 𝕜]
[Fintype ↑G.edgeSet]
{p : SimpleGraph V → Prop}
{r : 𝕜}
[Fintype (Sym2 V)]
:
G.DeleteFar p r ↔ ∀ ⦃H : SimpleGraph V⦄ [inst : DecidableRel H.Adj], H ≤ G → p H → r ≤ ↑G.edgeFinset.card - ↑H.edgeFinset.card
theorem
SimpleGraph.DeleteFar.le_card_sub_card
{V : Type u_1}
{G : SimpleGraph V}
{𝕜 : Type u_2}
[Ring 𝕜]
[PartialOrder 𝕜]
[Fintype ↑G.edgeSet]
{p : SimpleGraph V → Prop}
{r : 𝕜}
[Fintype (Sym2 V)]
:
G.DeleteFar p r →
∀ ⦃H : SimpleGraph V⦄ [inst : DecidableRel H.Adj], H ≤ G → p H → r ≤ ↑G.edgeFinset.card - ↑H.edgeFinset.card
Alias of the forward direction of SimpleGraph.deleteFar_iff
.
theorem
SimpleGraph.DeleteFar.mono
{V : Type u_1}
{G : SimpleGraph V}
{𝕜 : Type u_2}
[Ring 𝕜]
[PartialOrder 𝕜]
[Fintype ↑G.edgeSet]
{p : SimpleGraph V → Prop}
{r₁ r₂ : 𝕜}
(h : G.DeleteFar p r₂)
(hr : r₁ ≤ r₂)
:
G.DeleteFar p r₁