Documentation

Mathlib.Combinatorics.Young.YoungDiagram

Young diagrams #

A Young diagram is a finite set of up-left justified boxes:

□□□□□
□□□
□□□
□

This Young diagram corresponds to the [5, 3, 3, 1] partition of 12.

We represent it as a lower set in ℕ × ℕ in the product partial order. We write (i, j) ∈ μ to say that (i, j) (in matrix coordinates) is in the Young diagram μ.

Main definitions #

Notation #

In "English notation", a Young diagram is drawn so that (i1, j1) ≤ (i2, j2) means (i1, j1) is weakly up-and-left of (i2, j2). This terminology is used below, e.g. in YoungDiagram.up_left_mem.

Tags #

Young diagram

References #

https://en.wikipedia.org/wiki/Young_tableau

structure YoungDiagram :

A Young diagram is a finite collection of cells on the ℕ × ℕ grid such that whenever a cell is present, so are all the ones above and to the left of it. Like matrices, an (i, j) cell is a cell in row i and column j, where rows are enumerated downward and columns rightward.

Young diagrams are modeled as finite sets in ℕ × ℕ that are lower sets with respect to the standard order on products.

  • cells : Finset ( × )

    A finite set which represents a finite collection of cells on the ℕ × ℕ grid.

  • isLowerSet : IsLowerSet self.cells

    Cells are up-left justified, witnessed by the fact that cells is a lower set in ℕ × ℕ.

Instances For
    theorem YoungDiagram.ext {x y : YoungDiagram} (cells : x.cells = y.cells) :
    x = y
    @[simp]
    theorem YoungDiagram.mem_cells {μ : YoungDiagram} (c : × ) :
    c μ.cells c μ
    @[simp]
    theorem YoungDiagram.mem_mk (c : × ) (cells : Finset ( × )) (isLowerSet : IsLowerSet cells) :
    c { cells := cells, isLowerSet := isLowerSet } c cells
    instance YoungDiagram.decidableMem (μ : YoungDiagram) :
    DecidablePred fun (x : × ) => x μ
    Equations
    theorem YoungDiagram.up_left_mem (μ : YoungDiagram) {i1 i2 j1 j2 : } (hi : i1 i2) (hj : j1 j2) (hcell : (i2, j2) μ) :
    (i1, j1) μ

    In "English notation", a Young diagram is drawn so that (i1, j1) ≤ (i2, j2) means (i1, j1) is weakly up-and-left of (i2, j2).

    @[simp]
    theorem YoungDiagram.cells_subset_iff {μ ν : YoungDiagram} :
    μ.cells ν.cells μ ν
    @[simp]
    theorem YoungDiagram.cells_ssubset_iff {μ ν : YoungDiagram} :
    μ.cells ν.cells μ < ν
    Equations
    @[simp]
    theorem YoungDiagram.cells_sup (μ ν : YoungDiagram) :
    (μ ν).cells = μ.cells ν.cells
    @[simp]
    theorem YoungDiagram.coe_sup (μ ν : YoungDiagram) :
    (μ ν) = μ ν
    @[simp]
    theorem YoungDiagram.mem_sup {μ ν : YoungDiagram} {x : × } :
    x μ ν x μ x ν
    Equations
    @[simp]
    theorem YoungDiagram.cells_inf (μ ν : YoungDiagram) :
    (μ ν).cells = μ.cells ν.cells
    @[simp]
    theorem YoungDiagram.coe_inf (μ ν : YoungDiagram) :
    (μ ν) = μ ν
    @[simp]
    theorem YoungDiagram.mem_inf {μ ν : YoungDiagram} {x : × } :
    x μ ν x μ x ν
    @[simp]
    @[simp]
    theorem YoungDiagram.not_mem_bot (x : × ) :
    x
    Equations
    • One or more equations did not get rendered due to their size.
    @[reducible, inline]

    Cardinality of a Young diagram

    Equations
    • μ.card = μ.cells.card
    Instances For

      The transpose of a Young diagram is obtained by swapping i's with j's.

      Equations
      Instances For
        @[simp]
        theorem YoungDiagram.mem_transpose {μ : YoungDiagram} {c : × } :
        c μ.transpose c.swap μ
        @[simp]
        theorem YoungDiagram.transpose_transpose (μ : YoungDiagram) :
        μ.transpose.transpose = μ
        theorem YoungDiagram.transpose_eq_iff_eq_transpose {μ ν : YoungDiagram} :
        μ.transpose = ν μ = ν.transpose
        @[simp]
        theorem YoungDiagram.transpose_eq_iff {μ ν : YoungDiagram} :
        μ.transpose = ν.transpose μ = ν
        theorem YoungDiagram.le_of_transpose_le {μ ν : YoungDiagram} (h_le : μ.transpose ν) :
        μ ν.transpose
        @[simp]
        theorem YoungDiagram.transpose_le_iff {μ ν : YoungDiagram} :
        μ.transpose ν.transpose μ ν
        theorem YoungDiagram.transpose_mono {μ ν : YoungDiagram} (h_le : μ ν) :
        μ.transpose ν.transpose

        Transposing Young diagrams is an OrderIso.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Rows and row lengths of Young diagrams. #

          This section defines μ.row and μ.rowLen, with the following API: 1. (i, j) ∈ μ ↔ j < μ.rowLen i 2. μ.row i = {i} ×ˢ (Finset.range (μ.rowLen i)) 3. μ.rowLen i = (μ.row i).card 4. ∀ {i1 i2}, i1 ≤ i2 → μ.rowLen i2 ≤ μ.rowLen i1

          Note: #3 is not convenient for defining μ.rowLen; instead, μ.rowLen is defined as the smallest j such that (i, j) ∉ μ.

          The i-th row of a Young diagram consists of the cells whose first coordinate is i.

          Equations
          Instances For
            theorem YoungDiagram.mem_row_iff {μ : YoungDiagram} {i : } {c : × } :
            c μ.row i c μ c.1 = i
            theorem YoungDiagram.mk_mem_row_iff {μ : YoungDiagram} {i j : } :
            (i, j) μ.row i (i, j) μ
            theorem YoungDiagram.exists_not_mem_row (μ : YoungDiagram) (i : ) :
            ∃ (j : ), (i, j)μ

            Length of a row of a Young diagram

            Equations
            Instances For
              theorem YoungDiagram.mem_iff_lt_rowLen {μ : YoungDiagram} {i j : } :
              (i, j) μ j < μ.rowLen i
              theorem YoungDiagram.row_eq_prod {μ : YoungDiagram} {i : } :
              μ.row i = {i} ×ˢ Finset.range (μ.rowLen i)
              theorem YoungDiagram.rowLen_eq_card (μ : YoungDiagram) {i : } :
              μ.rowLen i = (μ.row i).card
              theorem YoungDiagram.rowLen_anti (μ : YoungDiagram) (i1 i2 : ) (hi : i1 i2) :
              μ.rowLen i2 μ.rowLen i1

              Columns and column lengths of Young diagrams. #

              This section has an identical API to the rows section.

              The j-th column of a Young diagram consists of the cells whose second coordinate is j.

              Equations
              Instances For
                theorem YoungDiagram.mem_col_iff {μ : YoungDiagram} {j : } {c : × } :
                c μ.col j c μ c.2 = j
                theorem YoungDiagram.mk_mem_col_iff {μ : YoungDiagram} {i j : } :
                (i, j) μ.col j (i, j) μ
                theorem YoungDiagram.exists_not_mem_col (μ : YoungDiagram) (j : ) :
                ∃ (i : ), (i, j)μ.cells

                Length of a column of a Young diagram

                Equations
                Instances For
                  @[simp]
                  theorem YoungDiagram.colLen_transpose (μ : YoungDiagram) (j : ) :
                  μ.transpose.colLen j = μ.rowLen j
                  @[simp]
                  theorem YoungDiagram.rowLen_transpose (μ : YoungDiagram) (i : ) :
                  μ.transpose.rowLen i = μ.colLen i
                  theorem YoungDiagram.mem_iff_lt_colLen {μ : YoungDiagram} {i j : } :
                  (i, j) μ i < μ.colLen j
                  theorem YoungDiagram.col_eq_prod {μ : YoungDiagram} {j : } :
                  μ.col j = Finset.range (μ.colLen j) ×ˢ {j}
                  theorem YoungDiagram.colLen_eq_card (μ : YoungDiagram) {j : } :
                  μ.colLen j = (μ.col j).card
                  theorem YoungDiagram.colLen_anti (μ : YoungDiagram) (j1 j2 : ) (hj : j1 j2) :
                  μ.colLen j2 μ.colLen j1

                  The list of row lengths of a Young diagram #

                  This section defines μ.rowLens : List, the list of row lengths of a Young diagram μ.

                  1. YoungDiagram.rowLens_sorted : It is weakly decreasing (List.Sorted (· ≥ ·)).
                  2. YoungDiagram.rowLens_pos : It is strictly positive.

                  List of row lengths of a Young diagram

                  Equations
                  Instances For
                    @[simp]
                    theorem YoungDiagram.get_rowLens {μ : YoungDiagram} {i : } {h : i < μ.rowLens.length} :
                    μ.rowLens[i] = μ.rowLen i
                    @[simp]
                    theorem YoungDiagram.length_rowLens {μ : YoungDiagram} :
                    μ.rowLens.length = μ.colLen 0
                    theorem YoungDiagram.rowLens_sorted (μ : YoungDiagram) :
                    List.Sorted (fun (x1 x2 : ) => x1 x2) μ.rowLens
                    theorem YoungDiagram.pos_of_mem_rowLens (μ : YoungDiagram) (x : ) (hx : x μ.rowLens) :
                    0 < x

                    Equivalence between Young diagrams and lists of natural numbers #

                    This section defines the equivalence between Young diagrams μ and weakly decreasing lists w of positive natural numbers, corresponding to row lengths of the diagram: YoungDiagram.equivListRowLens : YoungDiagram ≃ {w : List ℕ // w.Sorted (· ≥ ·) ∧ ∀ x ∈ w, 0 < x}

                    The two directions are YoungDiagram.rowLens (defined above) and YoungDiagram.ofRowLens.

                    The cells making up a YoungDiagram from a list of row lengths

                    Equations
                    Instances For
                      theorem YoungDiagram.mem_cellsOfRowLens {w : List } {c : × } :
                      c YoungDiagram.cellsOfRowLens w ∃ (h : c.1 < w.length), c.2 < w[c.1]
                      def YoungDiagram.ofRowLens (w : List ) (hw : List.Sorted (fun (x1 x2 : ) => x1 x2) w) :

                      Young diagram from a sorted list

                      Equations
                      Instances For
                        theorem YoungDiagram.mem_ofRowLens {w : List } {hw : List.Sorted (fun (x1 x2 : ) => x1 x2) w} {c : × } :
                        c ofRowLens w hw ∃ (h : c.1 < w.length), c.2 < w[c.1]
                        theorem YoungDiagram.rowLens_length_ofRowLens {w : List } {hw : List.Sorted (fun (x1 x2 : ) => x1 x2) w} (hpos : xw, 0 < x) :
                        (ofRowLens w hw).rowLens.length = w.length

                        The number of rows in ofRowLens w hw is the length of w

                        theorem YoungDiagram.rowLen_ofRowLens {w : List } {hw : List.Sorted (fun (x1 x2 : ) => x1 x2) w} (i : Fin w.length) :
                        (ofRowLens w hw).rowLen i = w[i]

                        The length of the ith row in ofRowLens w hw is the ith entry of w

                        The left_inv direction of the equivalence

                        theorem YoungDiagram.rowLens_ofRowLens_eq_self {w : List } {hw : List.Sorted (fun (x1 x2 : ) => x1 x2) w} (hpos : xw, 0 < x) :
                        (ofRowLens w hw).rowLens = w

                        The right_inv direction of the equivalence

                        def YoungDiagram.equivListRowLens :
                        YoungDiagram { w : List // List.Sorted (fun (x1 x2 : ) => x1 x2) w xw, 0 < x }

                        Equivalence between Young diagrams and weakly decreasing lists of positive natural numbers. A Young diagram μ is equivalent to a list of row lengths.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem YoungDiagram.equivListRowLens_symm_apply (ww : { w : List // List.Sorted (fun (x1 x2 : ) => x1 x2) w xw, 0 < x }) :
                          equivListRowLens.symm ww = ofRowLens ww