Documentation

Mathlib.Condensed.Light.InternallyProjective

Characterization of internal projectivity in light condensed modules #

This file gives an explicit condition on light condensed modules over a ring R to be internally projective, namely the following:

internallyProjective_iff_tensor_condition: P : LightCondMod R is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : P ⊗ R[S] ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : P ⊗ R[S'] ⟶ A, making the diagram

P ⊗ R[S'] ⟶ A
  |          |
  v          v
P ⊗ R[S]  ⟶ B

commute.

We also provide the analogous characterization with the tensor product commuted the other way around (see internallyProjective_iff_tensor_condition'), and the special cases when P is the free condensed module on a condensed set (free_internallyProjective_iff_tensor_condition, free_internallyProjective_iff_tensor_condition') and when P is the free condensed module on a light profinite set (free_lightProfinite_internallyProjective_iff_tensor_condition/ free_lightProfinite_internallyProjective_iff_tensor_condition').

The S-valued points of the internal hom A ⟶[LightCondMod R] B are in bijection with morpisms A ⊗ R[S] ⟶ B.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    P : LightCondMod R is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : P ⊗ R[S] ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : P ⊗ R[S'] ⟶ A, making the diagram

    P ⊗ R[S'] ⟶ A
      |          |
      v          v
    P ⊗ R[S]  ⟶ B
    

    commute.

    P : LightCondMod R is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : R[S] ⊗ P ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : R[S'] ⊗ P ⟶ A, making the diagram

    R[S'] ⊗ P ⟶ A
      |          |
      v          v
    R[S] ⊗ P  ⟶ B
    

    commute.

    Given a P : LightCondSet, the light free light condensed module R[P] is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : R[P × S] ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : R[P × S'] ⟶ A, making the diagram

    R[P × S'] ⟶ A
      |          |
      v          v
    R[P × S]  ⟶ B
    

    commute.

    Given a P : LightCondSet, the light free light condensed module R[P] is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : R[S × P] ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : R[S' × P] ⟶ A, making the diagram

    R[S' × P] ⟶ A
      |          |
      v          v
    R[S × P]  ⟶ B
    

    commute.

    Given a P : LightProfinite, the light free light condensed module R[P] is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : R[P × S] ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : R[P × S'] ⟶ A, making the diagram

    R[P × S'] ⟶ A
      |          |
      v          v
    R[P × S]  ⟶ B
    

    commute.

    Given a P : LightProfinite, the light free light condensed module R[P] is internally projective if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all S : LightProfinite and all morphisms g : R[S × P] ⟶ B, there exists a S' : LightProfinite with a surjeciton π : S' ⟶ S and a morphism g' : R[S' × P] ⟶ A, making the diagram

    R[S' × P] ⟶ A
      |          |
      v          v
    R[S × P]  ⟶ B
    

    commute.