Characterization of internal projectivity in light condensed modules #
This file gives an explicit condition on light condensed modules over a ring R to be internally
projective, namely the following:
internallyProjective_iff_tensor_condition: P : LightCondMod R is internally projective if and
only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : P ⊗ R[S] ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : P ⊗ R[S'] ⟶ A, making the diagram
P ⊗ R[S'] ⟶ A
| |
v v
P ⊗ R[S] ⟶ B
commute.
We also provide the analogous characterization with the tensor product commuted the other way around
(see internallyProjective_iff_tensor_condition'), and the special cases when P is the free
condensed module on a condensed set (free_internallyProjective_iff_tensor_condition,
free_internallyProjective_iff_tensor_condition') and when P is the free condensed module on a
light profinite set (free_lightProfinite_internallyProjective_iff_tensor_condition/
free_lightProfinite_internallyProjective_iff_tensor_condition').
The S-valued points of the internal hom A ⟶[LightCondMod R] B are in bijection with
morpisms A ⊗ R[S] ⟶ B.
Equations
- One or more equations did not get rendered due to their size.
Instances For
P : LightCondMod R is internally projective if and
only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : P ⊗ R[S] ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : P ⊗ R[S'] ⟶ A, making the diagram
P ⊗ R[S'] ⟶ A
| |
v v
P ⊗ R[S] ⟶ B
commute.
P : LightCondMod R is internally projective if and
only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : R[S] ⊗ P ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : R[S'] ⊗ P ⟶ A, making the diagram
R[S'] ⊗ P ⟶ A
| |
v v
R[S] ⊗ P ⟶ B
commute.
Given a P : LightCondSet, the light free light condensed module R[P] is internally projective if
and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : R[P × S] ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : R[P × S'] ⟶ A, making the diagram
R[P × S'] ⟶ A
| |
v v
R[P × S] ⟶ B
commute.
Given a P : LightCondSet, the light free light condensed module R[P] is internally projective if
and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : R[S × P] ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : R[S' × P] ⟶ A, making the diagram
R[S' × P] ⟶ A
| |
v v
R[S × P] ⟶ B
commute.
Given a P : LightProfinite, the light free light condensed module R[P] is internally projective
if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : R[P × S] ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : R[P × S'] ⟶ A, making the diagram
R[P × S'] ⟶ A
| |
v v
R[P × S] ⟶ B
commute.
Given a P : LightProfinite, the light free light condensed module R[P] is internally projective
if and only if, for all A B : LightCondMod R, for all epimorphisms e : A ⟶ B, for all
S : LightProfinite and all morphisms g : R[S × P] ⟶ B, there exists a S' : LightProfinite
with a surjeciton π : S' ⟶ S and a morphism g' : R[S' × P] ⟶ A, making the diagram
R[S' × P] ⟶ A
| |
v v
R[S × P] ⟶ B
commute.